

QUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme
2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
Vor ft or F	follow through from previous incorrect result		
CAO	correct answer only	MC	mis-copy
CSO	correct solution only	MR	mis-read
AWFW	anything which falls within	RA	required accuracy
AWRT	anything which rounds to	FW	further work
ACF	any correct form	ISW	ignore subsequent work
AG	answer given	FIW	from incorrect work
SC	special case	BOD	given benefit of doubt
OE	or equivalent	WR	work replaced by candidate
A2,1	2 or 1 (or 0) accuracy marks	formulae book	
$-x$ EE	deduct x marks for each error	NOS	not on scheme
NMS	no method shown	G	graph
PI	possibly implied	c	candidate
SCA	substantially correct approach	dp	significant figure(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC2

Q	Solution	Marks	Total	Comments
1(a)	$\sqrt{x^{3}}=x^{\frac{3}{2}}$	B1	1	OE; accept ' $k=1.5$ '
(b)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-\frac{3}{2} x^{\frac{1}{2}}$	$\begin{gathered} \text { M1 } \\ \text { B1 } \\ \text { A1F } \end{gathered}$	3	At least one index reduced by 1 and no term of the form $\sqrt{a x^{2}}$. For $2 x$ For $-1.5 x^{0.5}$.Ft on ans (a) non-integer k
(ii)	When $x=4, y=8$	B1		
	$\begin{aligned} y^{\prime}(4) & =; \\ & =2(4)-1.5(\sqrt{ } 4)=5 \end{aligned}$	M1 A1F		Attempt to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=4$ Ft on one earlier error provided noninteger powers in (a) and (b)(i)
	$\text { Tangent: } \begin{aligned} & y-8=5(x-4) \\ & y=5 x-12 \end{aligned}$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	5	$\begin{aligned} & y-y(4)=y^{\prime}(4)[x-4] \text { OE } \\ & \text { CSO; must be } y=5 x-12 \\ & \hline \end{aligned}$
	Total		9	
2(a)	Arc $P Q=r \theta$	M1		
	$=6 \pi(\mathrm{~cm})$	A1	2	Condone missing units throughout the paper
(b)	$\alpha+\alpha+\frac{3 \pi}{7}=\pi$	M1		OE
	$\alpha=\frac{2 \pi}{7}$	A1	2	Accept equivalent fractions eg $\frac{4 \pi}{14}$ and condone 0.286π or better
(c)	Chord $P Q=2 \times 14 \times \cos \alpha$	M1		OE eg $2 \times 14 \times \sin \frac{3 \pi}{14}$ or $17.45-17.5$ inclusive or $\sqrt{14^{2}+14^{2}-2 \times 14^{2} \times \cos \frac{3 \pi}{7}}$
	$\begin{aligned} \text { Perimeter } & =17.45 \ldots+6 \pi \\ & =36.307 \ldots=36.3(\mathrm{~cm}) \end{aligned}$	A1	2	Condone > 3sf
	Total		6	
3(a)	$r=16 \div 20=0.8$	B1	1	OE
(b)	$\frac{a}{1-r}=\frac{20}{1-0.8}$	M1		OE Using a correct formula with $a=20$ or $r=$ c's 0.8
	$=100$	A1F	2	ft on c's value of r provided $\|r\|<1$
(c)	$\left\{S_{20}=\right\} \frac{a\left(1-r^{20}\right)}{1-r}$	M1		OE Using a correct formula with $n=20$
	$=100\left(1-0.8^{20}\right)=98.847\{07 . .\}$	A1	2	Condone > 3dp
(d)	$\begin{aligned} n \text {th term } & =20 r^{n-1}=20(0.8)^{n-1} \\ & =20 \times 0.8^{-1} \times 0.8^{n} \end{aligned}$	M1		Ft on $c^{\prime} \mathrm{s} r$. Award even if 16^{n-1} seen
	$=25 \times 0.8^{n}$	A1	2	CSO; AG
	Total		7	

MPC2 (cont)

MPC2 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\begin{aligned} & \left(1+\frac{4}{x^{2}}\right)^{3}= \\ & {\left[1^{3}\right]+3\left(1^{2}\right)\left(\frac{4}{x^{2}}\right)+3(1)\left(\frac{4}{x^{2}}\right)^{2}+\left[\left(\frac{4}{x^{2}}\right)^{3}\right]} \end{aligned}$	M1		Any valid method as far as term(s) in $1 / x^{2}$ and term(s) in $1 / x^{4}$
	$=[1]+\frac{12}{x^{2}}+\frac{48}{x^{4}}+\left[\frac{64}{x^{6}}\right]$	A1 A1	3	$p=12$ Accept $\frac{12}{x^{2}}$ even within a series $q=48$ Accept $\frac{48}{x^{4}}$ even within a series
(b)(i)	$\begin{aligned} & \int\left(1+\frac{4}{x^{2}}\right)^{3} \mathrm{~d} x \\ & =\int\left(1+\frac{p}{x^{2}}+\frac{q}{x^{4}}+\frac{64}{x^{6}}\right) \mathrm{d} x \end{aligned}$	M1		Integral of an 'expansion', at least 3 terms PI by the next line
	$=x-p x^{-1}-\frac{q}{3} x^{-3}-\frac{64}{5} x^{-5}(+c)$ $=x-12 x^{-1}-16 x^{-3}-\frac{64}{5} x^{-5}(+c)$	$\begin{gathered} \mathrm{m} 1 \\ \mathrm{~A} 2 \mathrm{~F}, 1 \end{gathered}$	4	At least two powers correctly obtained Ft on c's non-zero integer values for p and q (A1F for two terms correct; can be unsimplified) Condone missing c but check that signs have been simplified at some stage before the award of both A marks.
(ii)	$\begin{aligned} & \left(2-\frac{p}{2}-\frac{q}{3(8)}-\frac{64}{5(32)}\right)- \\ & \left(1-p-\frac{q}{3}-\frac{64}{5}\right) \\ & =33.4 \end{aligned}$	M1 A1	2	$F(2)-F(1)$, where $F(x)$ is cand's answer or the correct answer to (b)(i). CSO
	Total		9	

MPC2 (cont)

Q	Solution	Marks	Total	Comments
8(a)(i)	$\begin{aligned} & \hline h=0.5 \\ & \text { Integral }=h / 2\{\ldots . . .\} \end{aligned}$	B1		PI
	$\{. .\}=\mathrm{f}(0)+2\left[\mathrm{f}\left(\frac{1}{2}\right)+\mathrm{f}(1)+\mathrm{f}\left(\frac{3}{2}\right)\right]+\mathrm{f}(2)$	M1		OE summing of areas of the four traps.
	$\begin{aligned} & \}=1+2[\sqrt{6}+6+6 \sqrt{6}]+36 \\ & =1+2[2.449 . .+6+14.6969 . .]+36 \\ & =37+2 \times 23.146 . .=83.292 \ldots \end{aligned}$	A1		Condone 1 numerical slip. Accept 3sf values if not exact.
	Integral $=0.25 \times 83.292 . .=20.8(3 \mathrm{sf})$	A1	4	CAO; must be 20.8
(ii)	Relevant trapezia drawn on a copy of given graph	M1		Accept single trapezium with its sloping side above the curve
	\{Approximation is an\}overestimate	A1	2	Dep. on 4 trapezia with each of their upper vertices lying on the curve
(b)(i)	Stretch (I) in x-direction (II)	M1		Need (I) and one of (II), (III) M0 if more than one transformation
	(scale factor) $\frac{1}{3}$ (III)	A1	2	
(ii)	$6^{3 x}=84$	M1		
	$\log _{10} 6^{3 x}=\log _{10} 84$	M1		Take logs of both sides of $a^{x}=b$, PI by 'correct' value(s) later or $3 x=\log _{6} 84$
	$\begin{aligned} & 3 x \log _{10} 6=\log _{10} 84 \\ & x=\frac{\lg 84}{3 \lg 6} \end{aligned}$	m1		Use of $\log 6^{3 x}=3 x \log 6$ OE or $3 x=\log _{6} 84$ seen
	$x=0.82429 \ldots=0.824 \text { (to 3dp) }$	A1	4	Must see that logs have been used before any of the last 3 marks are awarded in (b)(ii). Condone > 3dp
(c)	$f(x)=6^{x-1}-2$	B2,1	2	B1 for either $6^{x-1}+2$ or for $6^{x+1}-2$
	Total		14	
9(a)	$2 x=48$	B1		PI by $x=24^{\circ}$
	$2 x=180-48$	M1		Accept equivalents for x
	$2 x=360+48$ and $2 x=360+180-48$	M1		Accept equivalents for x
	$x=24^{\circ}, 66^{\circ}, 204^{\circ}, 246^{\circ}$	A1	4	CAO; need all four, no extras in given interval
(b)	$\frac{\sin \theta}{\cos \theta}=\tan \theta$	M1		Stated or used
	$2 \sin \theta-3 \cos \theta=0 \Rightarrow \tan \theta=1.5$	$\mathrm{A} 1$		
	$\theta=56.3^{\circ}$	A1		Condone > 1dp
	$\theta=56.3^{\circ}+180^{\circ}=236.3^{\circ}$	A1F	4	Ft on C's PV $+180^{\circ}$ dep only on the M1 provided no 'extra' solutions in the given interval.
Total			8	
TOTAL			75	

