Version: 1.0: 1105

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M mark is for method

m or dM mark is dependent on one or more M marks and is for method mark is dependent on M or m marks and is for accuracy

B mark is independent of M or m marks and is for method and accuracy

E mark is for explanation

√or ft or F follow through from previous

incorrect result MC mis-copy
CAO correct answer only MR mis-read
CSO correct answer only MR mis-read

CSO correct solution only RA required accuracy AWFW anything which falls within FW further work

AWRT anything which rounds to **ISW** ignore subsequent work any correct form **ACF FIW** from incorrect work answer given given benefit of doubt AG **BOD** SC special case WR work replaced by candidate

OE OE FB formulae book A2,1 2 or 1 (or 0) accuracy marks NOS not on scheme -x EE deduct x marks for each error G graph

NMS no method shown c candidate
PI possibly implied sf significant figure(s)
SCA substantially correct approach dp decimal place(s)

Application of Mark Scheme

No method shown:

Correct answer without working mark as in scheme

Incorrect answer without working zero marks unless specified otherwise

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out mark both/all fully and award the mean

mark rounded down

1 complete and 1 partial attempt, neither crossed out award credit for the complete solution only

Crossed out work do not mark unless it has not been replaced

Alternative solution using a correct or partially correct method award method and accuracy marks as

appropriate

MPC1

Q	Solution	Marks	Total	Comments
1(a)	$(6+2)^{-1}$	M1		One coordinate correct unsimplified
	Midpoint $\left(\frac{6+2}{2}, \frac{5-1}{2}\right) = (4, 2)$	A1	2	Both correct and simplified
(a)	$AB^2 = (6-2)^2 + (5+1)^2$	3.61		
(b)	$AB = (0-2)^{-1}(3+1)$ $= (16+36) = 52$	M1 A1		Pythagoras used (condone one slip) 52 or $\sqrt{52}$ seen
	· · · · · · · · · · · · · · · · · · ·			32 01 \(\sqrt{32}\) Seen
	$\Rightarrow AB = 2\sqrt{13}$	A1	3	
(c)(i)	Gradient $AB = (51) / (6 - 2)$	M1		Must be y on top and subtraction $(6-2)$
	$=\frac{6}{4}=\frac{3}{2}=1.5$	A1	2	Any correct equivalent
(**)	4 2			and the second of the second o
(ii)	y-5 = m(x-6) or $y+1 = m(x-2)$	M1		or $y = mx + c$ and attempt to find c.
	2y - 10 = 3x - 18 etc leading to			
	3x - 2y = 8	A1	2	AC (be convinced)
(d)	Attempt to eliminate <i>x</i> or <i>y</i>	M1		AG (be convinced) 7x = 28 etc
	x = 4	A1		
	y = 2	A1	3	<i>C</i> is point (4,2)
	Total		12	
2(a)	$(x-3)^2$	B1		p=3
	+ 7	B1	2	q = 7
(b)(i)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	B1√		ft their p
	/ /	B1√	2	ft their q
(ii)	16	N/1		parabola (ft on vertex approx position)
(11)	graph	M1 A1	2	correct with $y = 16$ marked or stated
	7 →x	711	2	
	3			
(iii)	Line of symmetry $x = 3$	B1	1	Must have correct equation
(c)	Translation (and no additional transf'n)	E1		Not shift, move, transformation, etc
	through [3]	M1		one part correct eg 7 units up
	through 7	A1	3	all correct – if not vector – must say 3
<u> </u>	Total		10	units in positive <i>x</i> - direction etc
3(a)	$\frac{1000}{(x-2)^2 + (y+1)^2}$	M1	10	$(x \pm a)^2 + (y \pm b)^2$
	(x-2) + (y+1) = 5 ² or 25	B1		$(n \perp u) + (y \perp 0)$
	- 5 Oi 25	A1	3	Correct equation for circle
				_
(b)	Sub $x = 6$, $y = 2$ into <i>their</i> circle equation	M1		Or distance $PC^2 = 4^2 + 3^2$
	$(6-2)^2 + (2+1)^2 = 16+9 = 25$	A1	2	Shown to equal radius ²
(c)	Gradient $CP = (21) / (6 - 2)$	M1		Must be y on top and subtraction $(6-2)$
	$=\frac{3}{4}=0.75$	A1	2	Any correct equivalent
(4)(3)	Grad of part = 1 / their gradient CD	M1		Or m m = 1 used or stated
(d)(i)	Grad of perp = -1 / their gradient CP = $-4/3$	M1 A1	2	Or $m_1 m_2 = -1$ used or stated
	y-2 = their (d)(i) gradient(x-6)			
(ii)) (a)(v)Bradioni(w 0)	B1√	1	OE such as $3y + 4x = 30$
	Total		10	
	1 Otal		10	

www.theallpapers.com

MPC1 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	p(3) = 27 - 45 + 21 - 3	M1		Finding p(3)
	$p(3) = 0 \implies x-3$ is a factor	A1	2	Shown = 0 plus a statement
				Or $(x-3)(x^2-2x+1)$
(;;)	B is point $(3,0)$	B1	1	Must have coordinates
(ii)	B is point (3,0)	DI	1	With have coordinates
(b)(i)	dy	M1		One term correct
(0)(1)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 10x + 7$	A1	2	All correct with NO $+c$ etc
	$\mathrm{d}x$	711	_	This confect with 140 % etc
(;;)	. 2	M1		A.,
(ii)	$3x^2 - 10x + 7 = 0$	1V1 1		Putting their $\frac{dy}{dx} = 0$
	$\Rightarrow (x-1)(3x-7) = 0$	m1		U.A
		1111		Attempt to use quad formula or factorise
	\Rightarrow at $M, x = \frac{7}{3}$	A1	3	CSO factors correct etc
	3			CSO factors correct etc
(c)	d^2y	D: ^		ft their $\frac{dy}{dy}$
	$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = 6x - 10$	B1√		ft their $\frac{dy}{dx}$
		D1 ^	2	d^2v
	sub $x = 1$, $\Rightarrow \frac{d^2 y}{dx^2} = -4$	B1√	2	ft their $\frac{d^2 y}{dx^2}$
	dx^2			
(d)(i)	$\frac{x^4}{4} - \frac{5x^3}{3} + \frac{7x^2}{2} - 3x (+c)$	M1		Increase one power by 1
	$\frac{1}{4} - \frac{1}{3} + \frac{1}{2} - 3x (+c)$	A1		One term correct
		A1	4	Two other terms correct
		A1	4	All correct (condone missing $+ c$)
(ii)	Realisation that limits are 0 and 1	B1		Condone wrong way round
(11)	r. – – 1	Di		Condone wrong way round
	$\left \frac{1}{4} - \frac{5}{3} + \frac{7}{2} - 3 \right - 0$	M1		Attempt to sub their limits into
				their (d)(i)
	$=-\frac{11}{12}$	A1		CSO . Must use $F(1) - F(0)$ correctly
	12			
	$Area = \frac{11}{12}$	F.4		
		E1	4	CSO. Convincing argument
	Total		18	
				Multiplied out
5(a)	$3+1+2\sqrt{3}$	M1		At least 3 terms with $\sqrt{3}$ term
	$=4+2\sqrt{3}$	A1	2	m = 4, n = 2
	- 1 1 2 y 3		_	· ,·· =
(b)	Multiplying top and bottom by $\sqrt{3} + 1$	M1		
	Denominator = $3 - 1 = 2$			
		B1		
	Expression = $\frac{4+2\sqrt{3}}{2}$			
	2		_	
	$= 2 + \sqrt{3}$	A1	3	CSO $m = 2, n = 1$
	Total		5	

www.theallpapers.com

MPC1 (cont)

<u>MPC1 (c</u> Q	Solution	Marks	Total	Comments
6(a)	$p(x) = x^3 + x^2 + 3x - 2x^2 - 2x - 6$	M1		Condone one slip
	$=x^3-x^2+x-6$	A1	2	a = -1, b = 1
		Al	2	u=1, v=1
(b)	$p(-1) = -3 \times 3$ or $-1 - 1 - 1 - 6$	M1		Must use $p(-1)$ and not long division
	(Remainder is) – 9	A1	2	
(c)		λ/1		$b^2 - 4ac = 1 - 12 = -11$
	Considering $x^2 + x + 3 = 0$ and attempting to solve or use discriminant	M1		0 144 - 1 12 - 11
	$b^2 - 4ac < 0$ \Rightarrow no real roots	A1		CSO
	Only real root is 2	B1	3	x=2
		51		X-Z
	Total		7	
7(a)	3x-3 > 3-5x-30	M1		Multiplying out (condone one slip)
	$\Rightarrow 8x > -24$	A1		Or correct equivalent eg $-8x < 24$
	$\Rightarrow x > -3$	A1	3	(Penalise \leq , \geq once only in (a) and (b))
(b)	$x^2 - x - 6 = (x - 3)(x + 2)$	M1		Attempt to use quad formula or factorise
(0)	(critical points are) 3 and –2	A1		May be seen in diagram or solution
	Sketch or sign diagram			+
		M1		-2 3 +
	2 < x < 3	A1	4	
	Total		7	
8(a)	$mx - 1 = x^2 - 5x + 3$			Strict mark here – no trailing equals
	$\Rightarrow x^2 - 5x - mx + 4 = 0$ $\Rightarrow x^2 - (5 + m)x + 4 = 0$			signs
	$\Rightarrow x^2 - (5+m)x + 4 = 0$	B1	1	AG
				(be convinced about algebra and = 0)
(b)	$(5+m)^2 - 16 = 0$	M1		Equal roots when " $b^2 - 4ac$ " = 0 used
	$5+m=(\pm)4$ or $(m+1)(m+9)=0$	m1		Square root or factor/formula attempt
	m = -1	A1		2 - James 1000 of Indian Indian Indian
	m = -9	A1	4	SC B1, B1 only for -1, -9 (no working)
(-)	Line is a tengent to the server	E1	1	Time touched growns and a state of the state of the
(c)	Line is a tangent to the curve	E1	1	Line touches curve, cuts at one point etc
	Total		6	
	Total		75	

www.theallpapers.com