AQA

ASSESSMENT and
OUALIFICATIONS

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Vor ft or F	follow through from previous incorrect result	
CAO	correct answer only	MC

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

Q	Solution	Marks	Total	Comments
1(a) (b)	$\begin{aligned} & \text { Midpoint }\left(\frac{6+2}{2}, \frac{5-1}{2}\right)=(4,2) \\ & A B^{2}=(6-2)^{2}+(5+1)^{2} \\ & =(16+36)=52 \\ & \Rightarrow A B=2 \sqrt{13} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	2 3	One coordinate correct unsimplified Both correct and simplified Pythagoras used (condone one slip) 52 or $\sqrt{52}$ seen
(c)(i)	$\begin{aligned} & \text { Gradient } A B=(5--1) /(6-2) \\ & =\frac{6}{4}=\frac{3}{2}=1.5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Must be y on top and subtraction (6-2) Any correct equivalent
(ii)	$\begin{aligned} & y-5=m(x-6) \text { or } y+1=m(x-2) \\ & 2 y-10=3 x-18 \text { etc leading to } \\ & 3 x-2 y=8 \end{aligned}$	M1 A1	2	or $y=m x+c$ and attempt to find c.
(d)	Attempt to eliminate x or y $\begin{aligned} & x=4 \\ & y=2 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	AG (be convinced) $7 x=28 \text { etc }$ C is point $(4,2)$
	Total		12	
2(a)	$(x-3)^{2}$	B1		$p=3$
	7	B1	2	$q=7$
(b)(i)	Vertex (3, 7)	$\begin{aligned} & \mathrm{B} 1 \checkmark \\ & \mathrm{~B} 1 \checkmark \end{aligned}$	2	ft their p ft their q
(ii)		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	parabola (ft on vertex approx position) correct with $y=16$ marked or stated
(iii) (c)	Line of symmetry $x=3$ Translation (and no additional transf'n) through $\left[\begin{array}{l}3 \\ 7\end{array}\right]$	B1 E1 M1 A1	1 3	Must have correct equation Not shift, move, transformation, etc one part correct eg 7 units up all correct - if not vector - must say 3 units in positive x - direction etc
	Total		10	
3(a)	$\begin{array}{r} (x-2)^{2}+(y+1)^{2} \\ =5^{2} \quad \text { or } 25 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	3	$(x \pm a)^{2}+(y \pm b)^{2}$ Correct equation for circle
(b)	Sub $x=6, y=2$ into their circle equation $(6-2)^{2}+(2+1)^{2}=16+9=25$ Gradient $C P=(2--1) /(6-2)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \end{aligned}$	2	Or distance $P C^{2}=4^{2}+3^{2}$ Shown to equal radius ${ }^{2}$ Must be y on top and subtraction (6-2)
	$=\frac{3}{4}=0.75$	A1	2	Any correct equivalent
(d)(i)	$\begin{aligned} & \text { Grad of perp }=-1 / \text { their gradient } C P \\ & =-4 / 3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Or $m_{1} m_{2}=-1$ used or stated
(ii)	$y-2=\operatorname{their}(d)(i) \operatorname{gradient}(x-6)$			
	Total		10	

MPC1 (cont)

MPC1 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
6(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{p}(x)=x^{3}+x^{2}+3 x-2 x^{2}-2 x-6 \\
\& =x^{3}-x^{2}+x-6
\end{aligned}
\]
\[
\mathrm{p}(-1)=-3 \times 3 \text { or } \quad-1-1-1-6
\] \\
(Remainder is) -9 \\
Considering \(x^{2}+x+3=0\) and attempting to solve or use discriminant
\[
b^{2}-4 a c<0 \quad \Rightarrow \text { no real roots }
\] \\
Only real root is 2
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
B1
\end{tabular} \& 2
2

3 \& | Condone one slip $a=-1, b=1$ |
| :--- |
| Must use $\mathrm{p}(-1)$ and not long division $b^{2}-4 a c=1-12=-11$ |
| CSO $x=2$ |

\hline \& Total \& \& 7 \&

\hline 7(a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
& 3 x-3>3-5 x-30 \\
& \Rightarrow 8 x>-24 \\
& \Rightarrow x>-3 \\
& x^{2}-x-6=(x-3)(x+2)
\end{aligned}
$$

(critical points are) 3 and -2

Sketch or sign diagram
$$
2<x<3
$$

 \&

M1

A1

A1

M1

A1

M1

A1

 \& 4 \&

Multiplying out (condone one slip)

Or correct equivalent eg $\quad-8 x<24$ (Penalise \leqslant, \geqslant once only in (a) and (b))

Attempt to use quad formula or factorise May be seen in diagram or solution
\end{tabular}

\hline \& Total \& \& 7 \&

\hline | 8(a) |
| :--- |
| (b) |
| (c) | \& | $\begin{aligned} & m x-1=x^{2}-5 x+3 \\ & \Rightarrow x^{2}-5 x-m x+4=0 \\ & \Rightarrow x^{2}-(5+m) x+4=0 \\ & (5+m)^{2}-16=0 \\ & 5+m=(\pm) 4 \quad \text { or }(m+1)(m+9)=0 \\ & m=-1 \\ & m=-9 \end{aligned}$ |
| :--- |
| Line is a tangent to the curve | \& B1

M1
m1
A1
A1
E1 \& 4

1 \& | Strict mark here - no trailing equals signs |
| :--- |
| AG |
| (be convinced about algebra and $=0$) |
| Equal roots when " $b^{2}-4 a c$ " $=0$ used Square root or factor/formula attempt |
| SC B1, B1 only for $-1,-9$ (no working) |
| Line touches curve, cuts at one point etc |

\hline \& Total \& \& 6 \&

\hline \& Total \& \& 75 \&

\hline
\end{tabular}

