

QUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$\begin{aligned} & \mathrm{p}(-2)=-8-16+14+k \\ & \mathrm{p}(-2)=0 \Rightarrow-10+k=0 \Rightarrow k=10 \\ & \text { Must have statement if } k=10 \text { substitute } \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	2	or long division or $(x+2)\left(x^{2}-6 x+5\right)$ AG likely withhold if $\mathrm{p}(-2)=0$ not seen
(ii)	$\begin{aligned} & \mathrm{p}(x)=(x+2)\left(x^{2}+\ldots .5\right) \\ & \mathrm{p}(x)=(x+2)\left(x^{2}-6 x+5\right) \\ & \Rightarrow \mathrm{p}(x)=(x+2)(x-1)(x-5) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Attempt at quadratic or second linear factor $(x-1)$ or $(x-5)$ from factor theorem Must be written as product
(b)	$\begin{aligned} & \mathrm{p}(3)=27-36-21+k \\ & \text { (Remainder) }=k-30=\underline{-20} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	long division scores M0 Condone $k-30$
		B1		Curve thro' 10 marked on y-axis
(c)		B1 \checkmark		FT their 3 roots marked on x-axis
	$2{ }^{-}$	M1		Cubic shape with a max and min
	1	A1	4	Correct graph (roughly as on left) going beyond -2 and 5 (condone max anywhere between $x=-2$ and 1 and \min between 1 and 5)
	Total		11	
2(a)(i)	$y=-\frac{3}{5} x+\ldots ; \quad \text { Gradient } A B=-\frac{3}{5}$	M1		Attempt to find $y=$ or $\Delta y / \Delta x$ or $\frac{3}{5}$ or $3 x / 5$
		A1	2	Gradient correct - condone slip in $y=\ldots$
(ii)	$m_{1} m_{2}=-1$	M1		Stated or used correctly
	$\text { Gradient of perpendicular }=\frac{5}{3}$	A1 \checkmark		ft gradient of $A B$
	$\Rightarrow y+2=\frac{5}{3}(x-6)$	A1	3	CSO Any correct form eg $y=\frac{5}{3} x-12$, $5 x-3 y=36$ etc
(b)	Eliminating x or y (unsimplified)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Must use $3 x+5 y=8 ; 2 x+3 y=3$
	$y=7$	A1	3	$B(-9,7)$
(c)	$\begin{gathered} 4^{2}+(k+2)^{2} \quad(=25) \text { or } 16+d^{2}=25 \\ k=1 \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Diagram with $3,4,5$ triangle Condone slip in one term (or $k+2=3$)
		A1	3	SC1 with no working for spotting one correct value of k. Full marks if both values spotted with no contradictory work
	Total		11	

MPC1 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \multirow[t]{2}{*}{3(a)} \& \[
\begin{aligned}
\& \frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2} \\
\& \text { Numerator }=5+3 \sqrt{5}+2 \sqrt{5}+6
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { M1 }
\end{aligned}
\] \& \& \begin{tabular}{l}
Multiplying top \& bottom by \(\pm(\sqrt{5}+2)\) \\
Multiplying out (condone one slip) \(\pm(\sqrt{5+3})(\sqrt{5+2})\)
\end{tabular} \\
\hline \& \[
\begin{aligned}
\& =5 \sqrt{5}+11 \\
\text { Final answer } \& =5 \sqrt{5}+11
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& 4 \& With clear evidence that denominator \(=1\) \\
\hline (b)(i) \& \[
\sqrt{45}=3 \sqrt{5}
\] \& B1 \& 1 \& \\
\hline \multirow[t]{2}{*}{(ii)} \& \begin{tabular}{l}
\[
\sqrt{20}=\sqrt{4} \sqrt{5} \text { or } 4 \sqrt{5}=\sqrt{4} \times \sqrt{20}
\] \\
or attempt to have equation with \(\sqrt{5}\) or \(\sqrt{20}\) only
\end{tabular} \& M1 \& \& Both sides \\
\hline \& \[
\begin{aligned}
\& {[x 2 \sqrt{5}=7 \sqrt{5}-3 \sqrt{5}] \text { or } x \sqrt{20}=2 \sqrt{20}} \\
\& x=2
\end{aligned}
\] \& \begin{tabular}{l}
A1 \\
A1
\end{tabular} \& 3 \& \begin{tabular}{l}
\[
\text { or } x=\sqrt{4}
\] \\
CSO
\end{tabular} \\
\hline \& Total \& \& 8 \& \\
\hline 4(a) \& \[
\begin{aligned}
\& (x+1)^{2}+(y-6)^{2} \\
\& \quad(1+36-12=25) \quad \text { RHS }=5^{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B2 } \\
\& \text { B1 }
\end{aligned}
\] \& 3 \& B1 for one term correct or missing + sign Condone 25 \\
\hline \[
\begin{array}{r}
\text { (b)(i) } \\
\text { (ii) }
\end{array}
\] \& \[
\text { Centre } \quad(-1,6) \quad \text { Radius }=5
\] \& \[
\begin{aligned}
\& \mathrm{B} 1 \checkmark \\
\& \mathrm{~B} 1 \checkmark
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& FT their \(a\) and \(b\) from part (a) or correct FT their \(r\) from part (a) RHS must be \(>0\) \\
\hline (c) \& \begin{tabular}{l}
Attempt to solve "their" \(x^{2}+2 x+12=0\) \\
(all working correct) so no real roots or statement that does not intersect
\end{tabular} \& M1

A1 \& 2 \& | Or comparing "their" $y_{c}=6$ and their $r=5$ |
| :--- |
| may use a diagram with values shown $\left\{\begin{array}{l} r<y_{c} \text { so does not intersect } \\ \text { condone } \pm 1 \text { or } \pm 6 \text { in centre for A1 } \end{array}\right.$ |

\hline \multirow[t]{2}{*}{(d)(i)} \& $(4-x)^{2}=16-8 x+x^{2}$ \& B1 \& \& Or $(-2-x)^{2}=4+4 x+x^{2}$

\hline \& $$
\begin{aligned}
& x^{2}+(4-x)^{2}+2 x-12(4-x)+12=0 \\
& \quad \text { or }(x+1)^{2}+(-2-x)^{2}=25 \\
& \Rightarrow 2 x^{2}+6 x-20=0 \quad \Rightarrow x^{2}+3 x-10=0
\end{aligned}
$$ \& M1

A1 \& 3 \& Sub $y=4-x$ in circle eqn (condone slip) or "their" circle equation AG CSO (must have $=0$)

\hline (ii) \& | $(x+5)(x-2)=0 \Rightarrow x=-5, x=2$ |
| :--- |
| Q has coordinates $(-5,9)$ | \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 2 \& Correct factors or unsimplified solution to quadratic (give credit if factorised in part (i)) SC2 if Q correct. Allow x $=-5 \quad y=9$

\hline \multirow[t]{3}{*}{(iii)} \& Mid point of 'their' $(-5,9)$ and (2,2) \& M1 \& \& Arithmetic mean of either x or y coords

\hline \& $$
\left(-1 \frac{1}{2}, 5 \frac{1}{2}\right)
$$ \& A1 \& 2 \& Must follow from correct value in (ii)

\hline \& Total \& \& 14 \&

\hline
\end{tabular}

MPC1 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$\begin{aligned} & 2 x^{2}+2 x h+4 x h \quad(=54) \\ & \Rightarrow x^{2}+3 x h=27 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Attempt at surface area (one slip) AG CSO
(ii)	$h=\frac{27-x^{2}}{3 x} \quad$ or $\quad h=\frac{9}{x}-\frac{x}{3}$ etc	B1	1	Any correct form
(iii)	$V=2 x^{2} h=18 x-\frac{2 x^{3}}{3}$	B1	1	AG (watch fudging) condone omission of brackets
(b)(i)	$\frac{\mathrm{d} V}{\mathrm{~d} x}=18-2 x^{2}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	One term correct "their" V All correct unsimplified $18-6 x^{2} / 3$
(ii)	$\text { Sub } x=3 \text { into their } \frac{\mathrm{d} V}{\mathrm{~d} x}$	M1		Or attempt to solve their $\frac{\mathrm{d} V}{\mathrm{~d} x}=0$
	Shown to equal 0 plus statement that this implies a stationary point if verifying	A1	2	CSO Condone $x= \pm 3$ or $x=3$ if solving
(c)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-4 x$	B1 \checkmark		$\text { FT their } \frac{\mathrm{d} V}{\mathrm{~d} x}$
	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}<0 \text { at stationary point } \Rightarrow \begin{aligned} & (=-12) \\ & \text { maximum } \end{aligned}$	E1ง	2	FT their second derivative conclusion If "their" $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0 \Rightarrow$ minimum etc
	Total		10	

MPC1 (cont)

