GCE 2005

January Series

Mark Scheme

Mathematics

MPC1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	ŌĒ	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

MPC1

Q	Solution	Marks	Total	Comments
1(a)(i)	Attempt at $\Delta y / \Delta x$ (used with numbers)	M1		Not <i>x</i> over <i>y</i>
	$=\frac{3}{12}=\frac{1}{4}$	A1	2	0.25 etc any correct equivalent
(ii)	v-2 = m(x-11) or $v+1 = m(x+1)$	M1		or $y = mx + c$ and attempt to find c
(11)	4y - x = -3 etc leading to			(or sub both points into given equation)
	x - 4y = 3	A1	2	AG (be convinced)
(h)	Attempt to eliminate x or y	M1		17v = 17 etc
(0)	y = 1	A1		
	<i>x</i> = 7	A1	3	<i>C</i> is point (7,1)
	Total		7	-
2(a)	$\frac{dy}{dt} = 5x^4 - 18x^2 - 3$	Ml		Decrease one power by 1
	dx		3	All correct
			5	All contect
(b)(i)	Sub $x = 2$ into their $\frac{dy}{dx}$	M1		80 - 72 - 3
	dx	A 1	2	AC (he convinced)
	Shown to equal 5	AI	2	AG (be convinced)
(ii)	Gradient of normal $= -\frac{1}{5}(y + \frac{1}{5}x +)$	B1		Or $m_1 m_2 = -1$ used or stated
	$y-3 = -\frac{1}{5}(x-2)$	M1		Trying normal NOT tangent or $y = mx+c$ and attempt to find c
	x + 5y = 17 (integer coefficients)	A1	3	Or integer multiple of coefficients
(c)	Sub $x = 1$ into their $\frac{dy}{dx}$ (= -16 < 0)	M1		$(5-18-3=-16)$ (Watch $\frac{d^2y}{dx^2}=-16!$)
	Negative value \Rightarrow DECREASING	E1√	2	Correct interpretation of sign of $\frac{dy}{dx}$
	Total		10	
3(a)	$(x-6)^2 + (y-3)^2$	B1		
	=36+9-20	M1		Generous with sign errors
	$=5^{2}$	A1	3	Condone 25
(b)	(i) Centre (6.3)	B1√		ft their <i>a</i> and <i>b</i>
	(ii) Radius = 5	B1√	2	Correct on θ (DUC) if DUC> 0
		DIV	2	Correct or $\pi \sqrt{RHS}$ if $RHS > 0$
(c)(i)	$x^{2} + (x + 4)^{2} + 12x + 6(x + 4) + 20 = 0$	M1		Or their $(x-a)^2 + (x+4-b)^2 = r^2$
	x + (x + 4) - 12x - 0(x + 4) + 20 = 0		2	AG (be convinced)
	$(2x^{-}-10x+12=0) \Rightarrow x^{-}-5x+6=0$		<u> </u>	
(ii)	(x-3)(x-2) = 0	M1		Attempt at factors or use of formula
	x = 2, x = 3	Al		Both correct
		m1		Substituting for one v value
	P, Q are (2,6) and (3,7)	A1	4	Both points correct
	Total		11	

Q	Solution	Marks	Total	Comments
4(a)(i)	f(-1) = -1 - 3 + 6 + 8	M1		Or long division up to remainder term
	(Remainder) = 10	A1	2	
<i>(</i> 1)		D1		
(11)	x-1 is a factor	BI D1	2	May be earned retrospectively
	x + 2 is a factor	BI	2	From part (11)
(iii)	Attempt at third factor	M1		Multiplying/dividing/factor theorem
(111)	f(x) = (x-1)(x+2)(x-4)	A1	2	$(x+4) \Rightarrow M1.A0$
			-	
(b)(i)	At A , $v = 8$	B1	1	Or (0.8)
(ii)	At B , $x = 4$	B1	1	Or (4,0) NO ft of wrong factor
(c)(i)	$\frac{x^4}{1-x^3-3x^2+8x}$ (+c)	MI		Increase one power by I
	$\frac{-1}{4} - x - 3x + 6x (+c)$			Une term correct (unsimplified)
			1	All correct (unsimplified)
		AI	4	(condone missing $+ c$)
(ii)	Realisation that limits are -2 and 1	B1		Condone wrong way round
	$\begin{bmatrix} 1 & 1 & 2 + 9 \end{bmatrix} \begin{bmatrix} 4 + 9 & 12 & 16 \end{bmatrix}$			
	Area = $\begin{bmatrix} -1 - 3 + 8 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 + 8 - 12 - 16 \end{bmatrix}$	M1		Attempt to sub their limits into their (c)(i)
	20 ¹	A 1	2	CSO Must use $E(1) = E(2)$ correctly
	= 20 - 4		5	$CSO.$ What use $\Gamma(1) = \Gamma(-2)$ concerns
	Total		15	
5(a)	$\left(\sqrt{12}\right)^2 - 2^2$ attempt to multiply out	M1		May have $\sqrt{12}$ terms
		1011	_	
	(=12-4) = 8	AI	2	
(h)	2 /2	B 1	1	
(6)	$2\sqrt{3}$	DI	1	
		D1		
(0)	Multiplying top and bottom by $\sqrt{12+2}$			$\begin{array}{c} \text{Or } \sqrt{3} + 1 \text{ etc} \\ 1 + 1 + 2 + 1 \\ 1 + 1 + 1 \\ 1$
	Numerator = $12 + 4\sqrt{12} + 4$	MI		At least 3 terms multiplied out on top
				OE in $\sqrt{3}$
	Expression = $\frac{16 + 4\sqrt{12}}{16 + 8\sqrt{3}}$ or $\frac{16 + 8\sqrt{3}}{16 + 8\sqrt{3}}$			
	8 01 <u>8</u>	AI√		π denominator from (a); or correct
	- 2 - 7	A1	4	our numerator correct (unsimplified)
	Total		7	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
6(a)	Sides $24 - 2x$, $9 - 2x$	B1		Either correct
	V = x(24-2x) (9-2x)	M1		3 sides involving <i>x</i> multiplied together
	$=4x^3-66x^2+216x$	A1	3	AG (be convinced)
(b)(i)	AV	M1		Power decreased by 1
(0)(1)	$\frac{dv}{dt} = 12x^2 - 132x + 216$	Δ1		One term correct
	dx	Al	3	All correct (no $+C$ etc.)
			5	
(ii)	\mathbf{D} \mathbf{d} \mathbf{d} \mathbf{d}			Or their $12x^2 - 132x + 216 = 0$
	Putting their $\frac{1}{dx} = 0$ (must see this first)	M1		Or $12(x^2 - 11x + 18) = 0$ or statement
	$\rightarrow r^2$ 11r + 18 - 0	Δ1	2	AG (be convinced)
	$\rightarrow x = 11x \pm 10 = 0$	211	2	
(iii)	(x-2)(x-9) = 0	M1		Factors, comp sq or formulae used (1 slip)
	$\Rightarrow r = 2$ $r = 9$	A 1	2	
	$\rightarrow x - 2, x - j$	AI	-	
(iv)	Reject $x = 9$, since $9 - 2x < 0$	E1	1	x = 2 is only possible value
()		21	-	
(c)(i)	$d^2 V$			Differentiating their dV (e.g. $2v$, 11)
	$\frac{1}{dr^2} = 24x - 132$	M1	_	Differentiating their $\frac{dx}{dx}$ (eg 2x-11)
		A1	2	Correct
(ii)	1217			1217
(11)	$x = 2 \text{ only} \Rightarrow \frac{d v}{1 + 2} = -84 \text{ (or } < 0)$	B1		Correct $\frac{d v}{d v^2}$ value OE full test.
	dx^2		2	a x
	Total	EI√	15	
7(a)	$k^2 + 10k + 25 - 12k^2 - 24k$	M1	15	Condone one slip
	$-11k^2 - 14k + 25$		2	No ISW here
	11k - 14k + 25		2	
(b)(i)	Real roots when " $b^2 - 4ac$ " ≥ 0	B1		Non-negative discriminant (stated / used)
	$(k+5)^2 - 12k(k+2)$	M1		Finding $b^2 - 4ac$ in terms of k
	(k-1)(11k+25) attempted to be shown	m1		Or factorisation attempt
	equal to $11k^2 + 14k - 25$	A1		
	$-11k^2 - 14k + 25 \ge 0$			Real roots condition correct and
	$\Rightarrow (k-1)(11k+25) \leq 0$	A1	5	AG (be convinced about inequality)
(ii)	(Critical values) 1 and $-\frac{25}{2}$ seen			+ +
(11)	11	B1		
	Sketch or sign diagram	M1		
	$\Rightarrow -\frac{25}{11} \leqslant k \leqslant 1$	Δ1	3	$-\frac{25}{11}$ 1
	Tatal		10	
	TOTAL		75	