Version: 1.0: 0206

General Certificate of Education

Mathematics 6360

MM2B Mechanics 2B

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M mark is for method mor dM mark is dependent on one or more M marks and is for method

A mark is dependent on one or more M marks and is for metho A mark is dependent on M or m marks and is for accuracy

B mark is independent of M or m marks and is for method and accuracy

E mark is for explanation

 $\sqrt{\text{or ft or F}}$ follow through from previous

incorrect result MC mis-copy correct answer only MR mis-read correct solution only RA required a

CSO correct solution only RA required accuracy AWFW anything which falls within FW further work

anything which rounds to **AWRT ISW** ignore subsequent work any correct form from incorrect work **ACF FIW** answer given given benefit of doubt AG **BOD** SC special case WR work replaced by candidate

OE OE FB formulae book A2,1 2 or 1 (or 0) accuracy marks NOS not on scheme -x EE deduct x marks for each error G graph

-x EE deduct x marks for each error G graph NMS no method shown c candidate

PI possibly implied sf significant figure(s) SCA substantially correct approach dp decimal place(s)

Application of Mark Scheme

No method shown:

CAO

Correct answer without working mark as in scheme

Incorrect answer without working zero marks unless specified otherwise

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out mark both/all fully and award the mean

mark rounded down

1 complete and 1 partial attempt, neither crossed out award credit for the complete solution only

Crossed out work do not mark unless it has not been replaced

Alternative solution using a correct or partially correct method award method and accuracy marks as

appropriate

MM2B

MM2B Q	Solution	Marks	Total	Comments
×			10001	M1: Substitution A1: All correct
1(a)	$12.5 = \lambda \times \frac{0.1}{0.4}$	M1A1		
1(a)				
	$\lambda = 50$	A 1	2	
	7. – 30	A1	3	
	/- >2			
(b)	$EPE = \frac{50 \times (0.1)^2}{2 \times 0.4}$	M1		M1 subs.
				DV A4 II
	= 0.625 J	A1		PI A1 all correct
	$0.625 = \frac{1}{2} \times 0.2 \times v^2$	M1		M1 use of principle ft EPE
	$v = 2.5 \text{ ms}^{-1}$	A1F		
	$v = 2.5 \text{ ms}^{-1}$	A1F	5	ft EPE
	W . 1		0	
• ()	Total	D.1	8	
2(a)	→ _N	B1	1	All forces shown and in correct direction (no extras)
				(no extras)
	R.			
	90g 35g 60.			
	D 105 (1005)			
(b)	R = 125g (=1225)	B1		
	$F = 0.3 \times R$	M1		Condone inequality
	F = 367.5N	A1F	3	ft slip, both vertical forces present
				(g missing B0 M1 A1F)
(c)	M (ground)			
	$35g \times 1.5\cos 60^{\circ} + 90g \times x \times \cos 60^{\circ}$			
	$= N \times 3\cos 30^{\circ}$	M1A2		M1 attempt at moments eqn. Accept one
				force missing1 each term missing or
				incorrect. Condone repeated error, g
	F = N	D1		missing or sin/cos mix.
	F = N Substitute to find x	B1		Subs. of candidate's N
		m1		
	x = 1.582 metres	A1	6	Accept 1.6
	_			
	Total		10	

Q	Solution	Marks	Total	Comments
3(a)(i)	$\frac{1}{2} \times 28 \times 1^2 + 28 \times 9.8 \times 2.5 = \frac{1}{2} \times 28 \times v^2$	M1A2		M1 all 3 terms – 1 each term incorrect
	$v = 7.07 \mathrm{ms}^{-1}$ (3 sf) (3 sf)	A1	4	Convincingly obtained
	7.07- 1 0	B1 B1 B1	3	v increasing accept straight line, not horizontal labels all correct (1, 7.07, T) correct shape
(b)	Initial energy = PE + KE $\frac{1}{2} \times 28 \times 1 + 28 \times 9.8 \times 2.5$ $700 - \frac{1}{2} \times 28 \times v^2 = 350$ $v = 5 \text{ms}^{-1}$	M1 M1A1 A1F	4	M1 work/energy principle A1 correct ft slip eg sign
	Total		11	
4(a)	$M(AB) 4Mg \times \frac{3d}{2} + Mg \times 2d = 5Mg \times \overline{y}$ $\overline{y} = 1.6d$	M1A2	4	M1A0 if areas used M1 3 terms, condone ratio methods for weights – 1 each term wrong
(b)	$D = \begin{pmatrix} 3d & C \\ M & \theta \\ 2.4d & G \end{pmatrix}$			
	$\tan \theta = \frac{GM}{CM}$	M1		Full method for an acute angle involving wallet
	$=\frac{2.4d}{3d}$	A1A1		A1A0 for inversion
	$\theta = 38.7^{\circ}$	A1F	4	ft slip in subtraction
	Total		8	

MM2B (cont)

MM2B	(cont)		ı	
Q	Solution	Marks	Total	Comments
5	$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{k}{v}$	B1		
	$\int v dv = \int k dt$ $\frac{v^2}{2} = kt(+c)$	M1		Separation of variables involving t
	v^2	m1		Integrate
	$\frac{1}{2} = kl(+c)$	A1		
	$t = 0, \ v = u, \ \therefore c = \frac{u^2}{2}$ $v^2 = u^2 + 2kt$	m1		
		A1	6	
	Total		6	
6(a)(i)	Acceleration = $\frac{v^2}{r} = \frac{(7.5)^2}{15}$	M1		Attempt at $\frac{v^2}{r}$
	$= 3.75 \mathrm{ms}^{-2}$	A1	2	
(ii)	$2940 = 400 \times \frac{V^2}{15}$	M1A1		M1 use, A1 subs correct
	$V = 10.5 \mathrm{ms}^{-1}$	A1	3	
(b)	Motorcycle and rider modelled as a particle	B1		
	Size of rider/cycle compared with radius /	В1	2	
	15m			
(c)	Acceleration or force $\left(\frac{v^2}{r}\right)$ must decrease	M1		Force decrease → radius increase B1 sc
	so r must increase	A 1	2	For 2 marks, algebraic reference or convincing explanation
	Total		9	
7(a)(i)	$\mathbf{v} = 2\cos 2t\mathbf{i} + 6\mathbf{j}$	M1A1	2	M1 differentiation (6t)
(ii)	$ \mathbf{v} = \sqrt{4\cos^2 2t + 36}$	M1	_	Sum of squares, for v or v^2
		A1F	3	ft trig term for v
(222)	$\cos^2 2t = 0 \text{ or } \cos 2t = 0$	A1		CAO
(iii)		M1		
	$t = \frac{\pi}{4}$	A1	2	radians
(b)(i)	$\mathbf{a} = -4\sin 2t \mathbf{i}$	M1		Differentiation attempt
	$\mathbf{F} = 0.25\mathbf{a}$	M1		Used
	$\mathbf{F} = -\sin 2t \mathbf{i}$	A1F	3	ft v , see vector
(ii)	Direction is $\pm i$	B1		
	$\left \sin 2t\right \le 1$	B1	2	
	Total		12	

MM2B (cont)

Q	Solution	Marks	Total	Comments
8(a)	$\frac{1}{2}mU^2 = mga$	M1A1		Conservation of energy M1
	$U = \sqrt{2ga}$	A1F	3	ft slip (eg $h = 2a$)
(b)	20			
	a e h			
	$R = 0: mg \cos \theta = \frac{mv^2}{a}$ $v^2 = ag \times \frac{h}{a}$ $v^2 = hg$	M1A1		M1 for $F = ma$ in general position
	$v^2 = ag \times \frac{h}{a}$	m1		Subs for $\cos \theta$
	$v^2 = hg$	A1F		ft errors in height
	$\left \frac{1}{2}m\left(\frac{5ag}{2}\right) = \frac{1}{2}mv^2 + mgh$	M1A1		M1 conservation of energy using u, v and h
	$\frac{5ag}{2} = 3gh$	m1		subs. for v^2
	$h = \frac{5a}{6}$	A1	8	
	Total		11	
	Total		75	