General Certificate of Education
January 2008
Advanced Level Examination
MATHEMATICS
MM2A/W
Unit Mechanics 2A

Tuesday 15 January 20089.00 am to 10.15 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MM2A/W.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The final answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- Take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$, unless stated otherwise.

Information

- The maximum mark for this paper is 60 .
- The marks for questions are shown in brackets.
- Unit Mechanics 2A has a written paper and coursework.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 A ball is thrown vertically upwards from ground level with an initial speed of $15 \mathrm{~m} \mathrm{~s}^{-1}$. The ball has a mass of 0.6 kg . Assume that the only force acting on the ball after it is thrown is its weight.
(a) Calculate the initial kinetic energy of the ball.
(2 marks)
(b) By using conservation of energy, find the maximum height above ground level reached by the ball.
(3 marks)
(c) By using conservation of energy, find the kinetic energy and the speed of the ball when it is at a height of 3 m above ground level.
(4 marks)

2 A particle moves in a horizontal plane under the action of a single force, \mathbf{F} newtons. The unit vectors \mathbf{i} and \mathbf{j} are directed east and north respectively. At time t seconds, the position vector, \mathbf{r} metres, of the particle is given by

$$
\mathbf{r}=\left(t^{3}-3 t^{2}+4\right) \mathbf{i}+\left(4 t+t^{2}\right) \mathbf{j}
$$

(a) Find an expression for the velocity of the particle at time t.
(b) The mass of the particle is 3 kg .
(i) Find an expression for \mathbf{F} at time t.
(ii) Find the magnitude of \mathbf{F} when $t=3$.
(c) Find the value of t when \mathbf{F} acts due north.

3 Two identical uniform rods, $A C$ and $B D$, are rigidly joined together to form a letter T , as shown in the diagram. The two rods are perpendicular.

(a) Explain why the centre of mass of the letter T lies on $B D$.
(b) Find the distance of the centre of mass of the letter T from $A C$.
(c) The letter T is freely suspended from A.

Find, to the nearest degree, the angle between $A C$ and the horizontal when the letter T hangs in equilibrium.

4 A light elastic string has natural length 6 metres and modulus of elasticity 300 newtons. It has one end attached to a fixed point, A, on a rough horizontal plane. The other end of the string is attached to a particle of mass 4 kilograms. The particle is pulled along the plane until it is 8 metres from the point A. The particle is then released from rest.
(a) Calculate the elastic potential energy of the string when the particle is 8 metres from the point A.
(b) The coefficient of friction between the particle and the plane is 0.3 .

Show that the speed of the particle when the string becomes slack is $6.18 \mathrm{~m} \mathrm{~s}^{-1}$, correct to three significant figures.
(6 marks)

Turn over for the next question

5 Two light inextensible strings, of lengths 0.4 m and 0.2 m , each have one end attached to a particle, P, of mass 4 kg . The other ends of the strings are attached to the points A and B respectively. The point A is vertically above the point B. The particle moves in a horizontal circle, centre B and radius 0.2 m , at a speed of $2 \mathrm{~m} \mathrm{~s}^{-1}$. The particle and strings are shown in the diagram.

(a) Calculate the magnitude of the acceleration of the particle.
(b) Show that the tension in string $P A$ is 45.3 N , correct to three significant figures.
(4 marks)
(c) Find the tension in string $P B$.

6 A light inextensible string, of length a, has one end attached to a fixed point O. A particle, of mass m, is attached to the other end. The particle is moving in a vertical circle, centre O. When the particle is at B, vertically above O, the string is taut and the particle is moving with speed $3 \sqrt{a g}$.

(a) Find, in terms of g and a, the speed of the particle at the lowest point, A, of its path.
(b) Find, in terms of g and m, the tension in the string when the particle is at A.

7 A car of mass 600 kg is driven along a straight horizontal road. The resistance to motion of the car is $k v^{2}$ newtons, where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the velocity of the car at time t seconds and k is a constant.
(a) When the engine of the car has power 8 kW , show that the equation of motion of the car is

$$
\begin{equation*}
600 \frac{\mathrm{~d} v}{\mathrm{~d} t}-\frac{8000}{v}+k v^{2}=0 \tag{4marks}
\end{equation*}
$$

(b) When the velocity of the car is $20 \mathrm{~m} \mathrm{~s}^{-1}$, the engine is turned off.
(i) Show that the equation of motion of the car now becomes

$$
600 \frac{\mathrm{~d} v}{\mathrm{~d} t}=-k v^{2}
$$

(ii) Find, in terms of k, the time taken for the velocity of the car to drop to $10 \mathrm{~m} \mathrm{~s}^{-1}$.

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

