AQA

ASSESSMENT and
OUALIFICATIONS

General Certificate of Education

Mathematics 6360

MM1B Mechanics 1B

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	OE	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark as in scheme zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

MM1B

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a)

(b) \& $$
\begin{aligned}
& m\left[\begin{array}{l}
4 \\
2
\end{array}\right]+3\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]=(m+3)\left[\begin{array}{l}
1 \\
\mathrm{~V}
\end{array}\right] \\
& 4 m-3=m+3 \\
& 3 m=6 \\
& m=2
\end{aligned}
$$

$$
4-3=5 \mathrm{~V}
$$

$$
V=0.2
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 4

3 \& | M1: Conservation of momentum equation with 3 terms |
| :--- |
| A1: Correct momentum equation |
| M1: Solving equation |
| A1: Correct m from correct working |
| Note: Deduct one mark for using $m g$ instead of m |
| M1: Conservation of momentum equation for component containing V |
| A1: Correct equation |
| A1: Correct V |

\hline \& Total \& \& 7 \&

\hline 2(a) \& \[
$$
\begin{aligned}
& s_{1}=\frac{1}{2} \times 15 \times 20=150 \\
& s_{2}=\frac{1}{2} \times 15 \times 80=600 \\
& s=600+150=750 \mathrm{~m}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1 |
| A1 |
| A1 | \& 4 \& | M1: Finding length of first stage |
| :--- |
| M1: Finding length of second stage |
| A1: Both distances correct |
| A1: Correct total distance |

\hline (b)(i) \& $$
t=\frac{750}{15}=50 \mathrm{~s}
$$ \& B1ft \& 1 \& B1: Correct time or their distance correctly divided by 15

\hline (ii)

(c) \& $$
\begin{aligned}
& \text { Delay }=120-50=70 \mathrm{~s} \\
& a=\frac{15}{80}=\frac{3}{16}=0.1875 \mathrm{~ms}^{-2} \\
& F=500000 \times 0.1875=93800 \mathrm{~N} \text { (to } 3 \mathrm{sf} \text {) }
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { B1ft } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
$$

\] \& 4 \& | B1: Correct time or their previous time correctly subtracted from 120 to give a positive answer |
| :--- |
| M1: Finding acceleration |
| A1: Correct acceleration |
| M1: Use of $F=m a$ |
| A1: Correct force |

\hline \& Total \& \& 10 \&

\hline 3(a) \& \[
$$
\begin{aligned}
& 2 \cos \alpha=0.8 \\
& \cos \alpha=\frac{0.8}{2} \\
& \alpha=\cos ^{-1}\left(\frac{0.8}{2}\right)=66.4^{\circ}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 | \& 3 \& | M1: Use of \cos or \sin to find α with 2 and 0.8 |
| :--- |
| A1: Correct equation |
| A1: Correct α from correct working |

\hline (b)(i) \& | $v=\sqrt{2^{2}-0.8^{2}}=1.83 \mathrm{~ms}^{-1}$ |
| :--- |
| or | \& M1 \& \& M1: Use of Pythagoras with 2 and 0.8 or trigonometry with angle from above

\hline \& $v=2 \sin 66.4^{\circ}=1.83 \mathrm{~ms}^{-1}$ \& A1 \& 2 \& A1: Correct velocity

\hline (ii) \& | $t=\frac{14}{1.83}=7.64 \mathrm{~s}$ |
| :--- |
| Allow 7.65 s | \& | M1 |
| :--- |
| A1 | \& 2 \& | M1: Use of distance over speed from previous |
| :--- |
| A1: Correct time |

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

MM1B (cont)

Q	Solution	Mark	Total	Comments
4(a)	$\begin{aligned} & 9 g-T=9 a \\ & T-5 g=5 a \\ & 4 g=14 a \\ & a=\frac{4 g}{14}=2.8 \mathrm{~ms}^{-2} \quad \mathbf{A G} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	5	M1: Equation for one particle A1: Correct equation M1: Equation for other particle A1: Correct equation A1: Correct a from correct working
(b)	$\begin{aligned} & T-5 g=5 \times 2.8 \\ & T=63 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	M1: Substituting acceleration to find T A1:Correct tension
(c)	$\begin{aligned} s & =\frac{1}{2} \times 2.8 \times 0.5^{2} \\ & =0.35 \mathrm{~m} \\ \text { Total } & =2 \times 0.35=0.7 \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \\ \text { A1ft } \end{gathered}$	4	M1: Constant acceleration equation with u $=0$ and $\mathrm{a} \neq g$ to find s. Allow \pm answers A1: Correct equation A1: Correct distance A1: Doubling their distance to get total distance apart
	Total		11	
5(a)	No air resistance/Only gravity or weight	B1	1	B1: Acceptable assumption
(b)(i)	$0.2 \times 8=0.2 \times 9.8-R$	M1		M1: Three term equation of motion
		A1		A1: Correct equation
	$R=0.36 \mathrm{~N}$	A1	3	A1: Correct magnitude of the resistance force
(b)(ii)	Increases as the speed increases	B1	1	B1: Correct explanation
(c) (i) (ii)	$\pm 9.8 \mathrm{~ms}^{-2}$	B1	1	B1: CAO
	Decreases towards zero	B1	1	B1: Correct explanation
	Total		7	
6(a)	Ball is a particle/no spin No air resistance/Only gravity or weight	B1		B1: One assumption
		B1	2	B1: Second assumption
(b)(i)	$\begin{aligned} & 24.5 t-4.9 t^{2}=0 \\ & \left(t=0 \text { or } t=\frac{24.5}{4.9}=5 \mathrm{~s}\right) \end{aligned}$	M1		M1: Equation for vertical motion with height zero
		A1 dM1		A1:Correct equation
		A1	4	A1: Correct time from correct working
(b)(ii)	$R=10 \times 5=50 \mathrm{~m}$	M1		M1: Use of horizontal component of velocity to find the range
		A1	2	A1: Correct range
(c)	$20=10 t$$t=2$	M1		M1: Horizontal equation
		A1		A1: Time to reach wall
	$h=24.5 \times 2-4.9 \times 2^{2}=29.4 \mathrm{~m}$	dM1		dM1: Vertical equation for height with $u=24.5$ and a negative acceleration
		A1	4	A1: Correct height
(d)	No change as acceleration and initial velocity do not change with the mass	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	2	B1: No change B1: Explanation
	Total		14	

MM1B (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \(7(a)\)
(b)
(c) \& \[
\begin{align*}
\mathbf{v} \& =4 \mathbf{j}+(3 \mathbf{i}-5 \mathbf{j}) t \\
\mathbf{v} \& =3 \mathbf{i}+(4-5 t) \mathbf{j} \\
4 \& -5 t=0 \\
t \& =0.8 \mathrm{~s} \\
\mathbf{v} \& =12 \mathbf{i}-16 \mathbf{j} \\
\mathbf{v} \& =\sqrt{12^{2}+16^{2}}=20 \tag{AG}
\end{align*}
\] \& \[
\begin{gathered}
\text { M1A1 } \\
\text { M1 } \\
\\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { dM1 } \\
\hline \text { A1 }
\end{gathered}
\] \& 2
4 \& \begin{tabular}{l}
M1: Use of \(\mathbf{v}=\mathbf{u}+\mathbf{a} t\) and \(\mathbf{u} \neq 0\) or integration \\
A1: Correct expression \\
M1: j component of velocity equal to zero \\
A1: Correct \(t\) \\
M1: Finding velocity when \(t=4\) \\
A1: Correct velocity \\
dM 1 :Finding the magnitude \\
\(\mathrm{A} 1:\) Correct speed from correct working
\end{tabular} \\
\hline \& Total \& \& 8 \& \\
\hline 8(a)

(b)

(c) \& | $\begin{aligned} & R+20 \sin 30^{\circ}=6 \mathrm{~g} \cos 10^{\circ} \\ & R=6 \mathrm{~g} \cos 10^{\circ}-20 \sin 30^{\circ} \\ & R=47.9 \mathrm{~N} \text { (to } 3 \mathrm{sf} \text {) } \end{aligned}$ |
| :--- |
| AG $\begin{aligned} & F=\mu R \\ & 6 \times 0.4=20 \cos 30^{\circ}-6 g \sin 10^{\circ}-\mu R \\ & \mu R=4.710 \\ & \mu=\frac{4.710}{47.91}=0.0983 \end{aligned}$ | \& B1

M1
A1
dM1
A1
M1
M1
A1
A1
dM1

A1 \& 6 \& | B1: Correct force diagram |
| :--- |
| M1: Resolving perpendicular to the slope with 3 terms |
| A1: Correct equation |
| dM1 Solving for R |
| A1: Correct R from correct working |
| M1: Use of $\mathrm{F}=\mu \mathrm{R}$ |
| M1: Resolving parallel to slope to get 4 term equation of motion |
| A1: Correct equation |
| A1: Correct $\mathrm{F} / \mu \mathrm{R}$ |
| dM1: Solving for μ |
| A1: AWRT 0.098 |

\hline \& Total \& \& 11 \&

\hline \& Total \& \& 75 \&

\hline
\end{tabular}

