

General Certificate of Education

Mathematics 6360

MM1A Mechanics 1A

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
E	mark is for explanation						
$\sqrt{\text{or ft or F}}$	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
−x EE	deduct x marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM1A

Q	Solution	Marks	Total	Comments
1(a)	$320 = \frac{1}{2} \times a \times 80^2$	M1		Use of constant acceleration equation
	2			with $u = 0$
		A1		Correct equation
	$a = \frac{2 \times 320}{80^2} = 0.1 \text{ ms}^{-2}$	A1	3	AG Correct acceleration from correct
	80^2	711	5	working
				6
(b)	$v = 0 + 0.1 \times 80$	M1		Use of constant acceleration equation
				with $u = 0$
	$= 8 \text{ ms}^{-1}$	A1	2	Correct velocity
(c)	$L - 450 \times 9.8 = 450 \times 0.1$	M1		Three term equation of motion
		A1		Correct equation
	L = 45 + 4410			
	= 4455			
	=4500N (to 3sf)	A1	3	AG Correct force
	10001 (10001)	111	5	
(d)	4410 N	B1	1	Correct force
	Total		9	
2(a)	2 3 - 2 -4	M1		Three term vector equation for
	$2\begin{bmatrix} 3 \\ -2 \end{bmatrix} + 3\begin{bmatrix} -4 \\ 1 \end{bmatrix} = 5\mathbf{v}$			conservation of momentum
		A1		Correct equation
	$\mathbf{v} = \frac{1}{5} \begin{bmatrix} -6\\ -1 \end{bmatrix} = \begin{bmatrix} -1.2\\ -0.2 \end{bmatrix}$	A1	3	Correct velocity
	5 [-1] [-0.2]	Aı	3	Correct verocity
	$v = \sqrt{1.2^2 + 0.2^2} = 1.22 \text{ ms}^{-1}$			
(b)	$v = \sqrt{1.2^2 + 0.2^2} = 1.22 \text{ ms}^{-1}$	M1		Finding speed from their velocity in
				part (a)
		A1F	2	(must include addition of two terms)
		АІГ	<u> </u>	Correct speed from their velocity Accept 1.21
	Total		5	11000рг 1.21

MM1A (cont)

3(a) $T_1 \sin 35^\circ = T_2 \sin 35^\circ$ M1 Resolving two forces and forming equation, with different tensions from $T_1 = T_2$ A1 Correct result from correct working $T_1 \cos 55^\circ = T_2 \cos 55^\circ$ $T_1 = T_2$ M1 Resolving forces to form a three to vertical equation	or each
OR $T_1 \cos 55^\circ = T_2 \cos 55^\circ$ $T_1 = T_2$ (b) $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A2 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A2	ng
OR $T_1 \cos 55^\circ = T_2 \cos 55^\circ$ $T_1 = T_2$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A1 $T_2 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ A2 $T_3 \cos 35^\circ + T_3 \cos 35^\circ = 2 \times 9.8$ A2 $T_3 \cos 35^\circ + T_3 \cos 35^\circ = 2 \times 9.8$ A2 $T_3 \cos 35^\circ + T_3 \cos 35^\circ = 2 \times 9.8$ A2 $T_3 \cos 35^\circ + T_3 \cos 35^\circ = 2 \times 9.8$ A2 $T_3 \cos 35^\circ + T_3 \cos 35^\circ = 2 \times 9.8$ A2 $T_3 \cos 35^\circ + T_3 \cos 35^\circ = 2 \times 9.8$ A2 $T_3 \cos 35^\circ + T_3 \cos 35^\circ = 2 \times 9.8$ A2 $T_3 \cos 35^\circ + T_3 \cos 35^\circ = 2 \times 9.8$ A3	
$T_1 \cos 55^\circ = T_2 \cos 55^\circ$ $T_1 = T_2$ (b) $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ M1 Resolving forces to form a three to	
$T_1 = T_2$ (b) $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ M1 Resolving forces to form a three to	erm
(b) $T_1 \cos 35^\circ + T_2 \cos 35^\circ = 2 \times 9.8$ M1 Resolving forces to form a three to	erm
, , , , , , , , , , , , , , , , , , , ,	erm
A1 Correct equation	
$T_1 \cos 35^\circ + T_1 \cos 35^\circ = 2 \times 9.8$ A1 $T_1 \text{ or } T_2 \text{ eliminated correctly}$	
$\frac{1}{2}$ $\frac{2 \times 9.8}{12.0 \times 10^{-2}}$ $\frac{12.0 \times 10^{-2}}{12.0 \times 10^{-2}}$	
$T_1 = \frac{2 \times 9.8}{2 \cos 35^{\circ}} = 12.0 \text{ N (to 3sf)}$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Accept 12 N or 11.9 N	
(c) $2\times40\cos35^{\circ} = 9.8m$ M1 Forming an equation to find m	
(c) $2\times40\cos35^\circ = 9.8m$ M1 Forming an equation to find m Correct equation	
$m = \frac{80\cos 35^{\circ}}{9.8} = 6.69 \text{ kg}$ A1 3 Correct mass	
OR	
$m = \frac{40}{11.96} \times 2$	
= 6.69 kg	
Total 10	
4(a) $3.45g - T = 3.45a$ M1 Three term equation of motion for particle	one
A1 Correct equation	
T-1.45g=1.45a M1 Three term equation of motion for	other
particle	
2g = 4.9a A1 Correct equation	
$a = \frac{2 \times 9.8}{4.9} = 4 \text{ ms}^{-2}$ Al 5 AG Correct acceleration from correct acceleration fr	rect
working	
(b) T 1.45 (4 + 1.45 (0.9)	nd T
(b) $T = 1.45 \times 4 + 1.45 \times 9.8$ M1 Use of one equation from (a) to find	.14 <i>1</i>
= 20.01	
= 20.0 N (to 3 sf) A1 2 Correct T	
(c) $s = \frac{1}{2} = 0.5 \text{ m}$ Use of $s = \frac{1}{2}$	
$v^2 = 2 \times 4 \times 0.5$ M1 Use of constant acceleration equation	ion with
$v = 2 \times 4 \times 0.5$ See of constant acceleration equal $u = 0$	TOH WITH
$v = 2 \text{ ms}^{-1}$ A1 3 Correct speed	
(no negative sign)	
10	

MM1A (cont)

Q	Solution	Marks	Total	Comments
5(a)	$V = 150 \tan 30^{\circ}$	M1		Using trigonometry (usually tan or sine rule) to find V
	$= 86.6 \text{ ms}^{-1}$	A1	2	AG Correct answer from correct working
				(Division by 2 only acceptable if sin 30°
	OR			or cos 60° seen)
	V _ 150			
	$\frac{V}{\sin 30^\circ} = \frac{150}{\sin 60^\circ}$			
	$V = 86.6 \text{ ms}^{-1}$			
(b)	150	M1		Using trigonometry or Pythagoras to find <i>v</i>
	$\frac{150}{v} = \cos 30^{\circ}$	A1		Correct expression
	150			
	$v = \frac{150}{\cos 30^{\circ}} = 173 \text{ ms}^{-1} \text{ (to 3sf)}$	A1	3	Correct answer
	Total		5	
6(a)	$2.45 - \frac{1}{2} \times 0.84^{2}$	M1		Equation for time to ground
	$2.45 = \frac{1}{2} \times 9.8t^2$	A1		Correct equation
	$t = \sqrt{\frac{2.45}{4.9}} = 0.707$ seconds (to 3 sf)		_	
	$t = \sqrt{\frac{4.9}{4.9}} = 0.707$ seconds (to 3 si)	A1	3	AG Correct time from correct working
(b)	$s = 20 \times 0.707 = 14.1 \text{ m (to 3sf)}$	M1	_	Using $20 \times \text{time from part (a)}$
		A1	2	Correct distance
(c)	$v_y = 0.707 \times 9.8 = 6.929$	M1 A1		Finding vertical component of velocity
	(6020)			Correct vertical component
	$\theta = \tan^{-1} \left(\frac{6.929}{20} \right) = 19.1^{\circ}$	dM1 A1	4	Using tan to find the angle Correct angle
	Total	Ai		Correct angle
7(a)	u = 5i	B1	9	Correct velocity
7(a)		D 1	1	Collect velocity
(b)	$\mathbf{v} = 5\mathbf{i} + (-0.2\mathbf{i} + 0.25\mathbf{j})t$	M1		Use of constant acceleration equation with
				u and a not zero
		A1	2	Correct velocity
				Give M1A0 for using 5 j
(c)	5 - 0.2t = 0	M1		Easterly component zero
		A1		Correct equation
	$t = \frac{5}{0.2} = 25 \text{ seconds}$		2	•
	$t = \frac{1}{0.2} = 25$ seconds	A1	3	Correct t
/=\		3.54		
(d)	$\mathbf{r} = 5\mathbf{i} \times 25 + \frac{1}{2}(-0.2\mathbf{i} + 0.25\mathbf{j}) \times 25^2$	M1		Use of constant acceleration equation
	2`	A1F		with t from part (c) Correct expression based on t from
		1311		part (c)
	$=62.5\mathbf{i} + 78.125\mathbf{j}$	A1		Correct simplification CAO
	_1(62.5)	dM1		Using tan to find the angle
	$\theta = \tan^{-1} \left(\frac{62.5}{78.125} \right)$	A1F		Correct expression based on t from part (c),
				with correct two values (either way)
	= 38.7°	A1	6	Correct angle CAO
	Total TOTAL		12 60	
	IOTAL		UV	