

General Certificate of Education

Mathematics 6360

MM1A/W Mechanics 1A

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
$\sqrt{100}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM1A				
Q	Solution	Marks	Total	Comments
1	$4 \times 8 = (4+1)v$	M1		M1: Three term momentum equation
		A1		A1: Correct equation
	$v = \frac{32}{5} = 6.4 \text{ ms}^{-1}$	A1	3	A1: Correct speed
	Total		3	
2(a)	t=0, t=30, t=50 seconds	B1	2	B1: Any one correct time
		B1	2	B1: The other two correct times Deduct one mark for each extra time if
				more than three times are given.
				(eg 0, 15, 30, 50 scores B1B0)
				(eg 0, 15, 30, 40, 50 scores B0B0)
				Condone 49 or 48 instead of 50
(b)		M1		M1: Finding distance by calculation of
	$s_1 = \frac{1}{2} \times 30 \times 5 = 75 \text{ m AG}$			area. (Must see use of 0.5 or $\frac{1}{2}$)
	2	A1	2	A1: Correct answer from correct working.
				(If candidates use two constant
				acceleration equations, both must be seen
		N/1		for the M1 mark.)
(c)	$s_2 = \frac{1}{2} \times 4 \times 20 = 40 \text{ m}$	M1		M1: Finding distance using area of the second triangle.
	2 2	A1		A1: Correct distance (ignore any negative
		711		signs).
				(If candidates use two constant
				acceleration equations, both must be seen
				for the M1 mark.)
				Accept 38/36 from use of 49/48 instead of
				50
	s = 75 + 40 = 115 m	M1		M1: Addition of the 75 metres and their
		A 1E	4	distance. $(75 - 40 = 35 \text{ OE scores M0})$
		A1F	4	A1F: Correct result using their value for second area.
				eg Accept 113/111 from use of 49/48
				instead of 50
(d)	s = 75 - 40 = 35 m	M1		M1: Difference between 75 and their
				value for the second distance. (Allow their
				distance -75) $(75 - (-40) = 115 \text{ OE})$
				scores M0)
		A1F	2	A1F: Correct result using their value for
				second area.
				(eg 40 - 75 = -35 M1A0)
				eg Accept 37/39 from use of 49/48 instead of 50
	Total		10	01.50
	Iotai		10	

4

<u>MM1</u> A/W («	AM1A/W (cont)					
Q	Solution	Marks	Total	Comments		
3(a)	11g - T = 11a	M1		M1: Equation of motion for <i>A</i> , containing <i>T</i> , 11g or 107.8 and 11 <i>a</i> .		
		A1		A1: Correct equation		
	T-9g=9a	M1		M1: Equation of motion for <i>B</i> containing		
				<i>T</i> , 9 <i>g</i> or 88.2 and 9 <i>a</i> .		
	2 22	A1		A1: Correct equation		
	2g=20a AG	A1	5	A1: Correct acceleration from correct		
	$a = 0.98 \text{ ms}^{-2}$ AG	AI	5	working.		
				Note: Do not penalise candidates who		
				consistently use signs in the opposite		
				direction throughout, provided they give their final answer as 0.98. If final answer		
				is -0.98 don't award final A1 mark.		
				Special Case:		
				Whole String Method $2g = 20a$ and		
				a = 2g/20 = 0.98 OE M1A1A1		
				Use of $g = 9.81$ gives 0.981. If this is the		
				first time award M1A1M1A1A0, but don't penalise again on the same script.		
(b)(i)	$v = 0 + 0.98 \times 0.5 = 0.49 \text{ ms}^{-1}$	M1		M1: Use of constant acceleration equation		
(~)(!)	v=0+0.98×0.5=0.49 ms			to find v with $u = 0$, $a = 0.98$ and $t = 0.5$.		
		A1	2	A1: Correct <i>v</i>		
(ii)	$s=0+\frac{1}{2}\times 0.98\times 0.5^2=0.1225$ m	M1		M1: Finding distance travelled by each		
	2 2 10.1223 m	A 1		particle with $u = 0$, $a = 0.98$ and $t = 0.5$.		
		A1		A1: Correct distance. Accept 0.122 or 0.123		
	OR			0.123		
	$0.49^2 = 0^2 + 2 \times 0.98s$	(M1)		M1: Finding distance travelled by each		
	$s = \frac{0.49^2}{2 \times 0.98} = 0.1225$			particle with $u = 0$, $a = 0.98$ and their v.		
	$3 - \frac{1}{2 \times 0.98} = 0.1223$	(A1)		A1: Correct distance. Accept 0.122 or		
	1 2 0 1225			0.123		
	$d = 2 \times 0.1225$	M1		M1: Doubling distance or use of $d/2$ in their original equation.		
	=0.245 m	A1	4	A1: Correct final distance. Allow 0.244 or		
			•	0.246.		
				(Use of $0.5 \times 0.49 = 0.245$ scores zero		
				unless justified)		
	Total		11			

Q	Solution	Marks	Total	Comments
4(a)	$F \xrightarrow{R} T$ $W \xrightarrow{T} R$ R	B1	1	B1: Diagram with four forces showing arrow heads and labelled. Allow <i>mg</i> or 8 <i>g</i> . Allow <i>T</i> or 40 or other reasonable notation. Allow μR . Direction of friction must be to the left. Any components must be shown in a
(b)	$F \longrightarrow W = W$ $W = 8g + 40\sin 30^{\circ} (= R)$	M1 A1		 different style. M1: Expression for normal reaction, with mg or 8g and 40sin30° or 40cos30°. Allow incorrect signs. A1: Correct expression with correct sign
	(R=)98.4 N AG	A1	3	A1: Correct value from correct working. Use of $g = 9.81$ gives 98.5 N. Do not penalise if you have already done so on
(c)	$F = 40\cos 30^\circ = 34.6$ N	M1 A1	2	the scripts. Otherwise penalise by 1 mark M1: Use of 40cos30° or 40sin30°. Award M0 if any extra terms. A1: Correct value for friction. Don't nee
(d)	$40\cos 30^\circ \le \mu \times 98.4$	M1 A1F		to see <i>F</i> . M1: Use of $F \le \mu R$ (or $F = \mu R$). Must use $R = 98.4$ and a positive value for <i>F</i> . A1F: Correct inequality or equation Allow use of $F = \mu R$ throughout.
		B1	1	B1: Diagram with four forces showing arrow heads and labelled. Allow mg or $8g$. Allow T or 40 or other reasonable notation. Allow μR .
	OR $F \xrightarrow{T} R$			Direction of friction must be to the left. Any components must be shown in a different style.

6

Q	Solution	Marks	Total	Comments
5(a)	Resultant = $(6\mathbf{i}-3\mathbf{j})+(3\mathbf{i}+15\mathbf{j})$	M1		M1: Summing the two vectors
	=9i+12j	A1	2	A1: Correct resultant
(b)	Magnitude = $\sqrt{9^2 + 12^2}$	M1		M1: Finding magnitude with an addition sign.
	=15 N	A1F	2	A1F: Correct magnitude based on their answer to part (a).
(c)	$\begin{array}{ccc} 1.5m=9 & 2m=12\\ m=6 \text{ kg} & m=6 \text{ kg} \end{array}$	M1		M1: Applying Newton's second law to one or both of the components.
	m = 0 kg $m = 0 kg$	A1F	2	A1F: Correct mass, follow through their answer to part (a). Do not award this mark if vector division with 2 components has been used, eg $\frac{9i+12j}{1.5i+2j}=6 \text{ or } 6i+6j \text{ etc} \text{ without a correct}$
(d)(i)	$\mathbf{r} = \frac{1}{2}(1.5\mathbf{i} + 2\mathbf{j})t^2$	M1		previous statement gives M0A0 M1: Using a constant acceleration equation to find the position vector with $\mathbf{u} = 0\mathbf{i} + 0\mathbf{j}$
(ii)	$\mathbf{r} = \frac{1}{2}(1.5\mathbf{i} + 2\mathbf{j}) \times 2^2 = 3\mathbf{i} + 4\mathbf{j}$	A1 M1	2	A1: Correct position vector. M1: Finding the position vector when $t = 2$.
	$\mathbf{r} = \frac{1}{2} (1.5\mathbf{i} + 2\mathbf{j}) \times 2^2 = 3\mathbf{i} + 4\mathbf{j}$ $d = \sqrt{(3)^2 + (4)^2}$ $= \sqrt{25} = 5$			$(\mathbf{r} = (1.5\mathbf{i} + 2\mathbf{j}) \times 2 = 3\mathbf{i} + 4\mathbf{j}$ scores M0 unless it is clear how the 2 was obtained,
	$=\sqrt{25}=5$	A1	2	possibly by a correct formula in (d) (i)) A1: Correct distance
	Τα	otal	10	

Q	Solution	Marks	Total	Comments
6(a)	ν 135° 3	M1		M1: Forming a triangle or diagram to find v (may be implied by an equation)
	Followed by $V^2 = 3^2 + 4^2 - 2 \times 3 \times 4 \cos 135^\circ$ $V = 6.478 = 6.48 \text{ ms}^{-1} \text{ AG}$ OR $v_1 = 4 + 3\cos 45^\circ = 6.121$ $v_2 = 3\cos 45^\circ = 2.121$ $V = \sqrt{(4 + 3\cos 45^\circ)^2 + (3\cos 45^\circ)^2}$	M1 A1 A1 (M1) (A1)		 M1: Using cosine rule to find V A1: Correct equation A1: Correct velocity from correct working M1: Two perpendicular equations A1: Both components correct
(b)	$V = 6.478 = 6.48 \text{ ms}^{-1} \text{ AG}$ $\frac{\sin \theta}{3} = \frac{\sin 135^{\circ}}{6.478}$ $\theta = 019^{\circ}$ OR	(A1) M1 A1 A1 (M1)	4	 A1: Correct velocity from correct working M1: Use of sine rule A1: Correct expression A1: Correct bearing (Accept 19°) M1: Consideration of perpendicular
	$\tan\theta = \frac{3\cos 45^{\circ}}{4+3\cos 45^{\circ}}$ $\theta = 019^{\circ}$ Total	(A1) (A1)	3 7	A1: Correct bearing (Accept 19°)

MM1A/W (cont)

Q	Solution	Marks	Total	Comments
7(a)	$0^2 = (30\sin 35^\circ)^2 + 2 \times (-9.8)s$	M1		M1: Equation to fine the max height, with
				v=0
		A1		A1: Correct equation
	$(30\sin 35^{\circ})^{2}$	M1		M1: Solving for the height
	$s = \frac{(30\sin 35^\circ)^2}{2 \times 9.8} = 15.1 \text{ m}$	A1	4	A1: Correct height
(b)	$28^2 = (30\cos 35^\circ)^2 + v_y^2$	M1		M1: Equation to find vertical component
		A1		A1: Correct equation
	$v_y = \sqrt{28^2 - (30\cos 35^\circ)^2}$ =13.4198=13.4 ms ⁻¹ AG	M1		M1: Solving equation
	$=13.4198=13.4 \text{ ms}^{-1} \text{ AG}$	A1	4	A1: Correct speed from correct working.
(c)		M1		M1: Expression to find the angle.
	$\tan\theta = \frac{13.4}{30\cos 35^\circ}$			
	$\theta = 28.6^{\circ}$	A1	2	A1: Correct angle.
	Total		10	
	TOTAL		60	