

General Certificate of Education

Mathematics 6360

MM03 Mechanics 3

Mark Scheme

2005 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	\mathbf{FW}	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	OE	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct x marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Application of Mark Scheme

No method shown:	
Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

MM03				
Q	Solution	Mark	Total	Comments
1(a)(i)	$ML^{-1}T^{-1}$	B1	1	
(11)	$MLT^{-2}L^{-2} = ML^{-1}T^{-2}$	B2 1	2	B2 for simplified form
		D2,1	2	
	$I^{3} \times T^{-1} - I^{-1} \times I^{a} \times (MI T^{-2} I^{-2})^{b} \times (MI^{-1} T^{-1})^{c}$	M1		
(b)	$L \land I = L \land L \land (MLI L) \land (ML I)$	A1F		
	$-I^{-1} \times I^a \times M^b \times I^b \times T^{-2b} \times I^{-2b} \times M^c$			
	$\begin{array}{c} -L & \wedge L & \wedge M & \wedge L & \wedge I \\ & \times I^{-c} & \times T^{-c} \end{array}$			
	$\mathbf{r}^{-1+a-b-c} \sim \mathbf{r}^{-b+c} \sim \mathbf{T}^{-2b-c}$	m1		Ы
	$=L \times M \times I$	m1		Cotting 2 equations
	-1 + a - b - c = 3	M1		Solution (finding at least one of $a h c$)
	$\begin{cases} b+c=0\\ 2l & 1 \end{cases}$			
	$\begin{bmatrix} -2b - c = -1 \\ 4 - b = 1 \end{bmatrix}$	4.15	c.	
	a=4, b=1, c=-1	AIF	6	
2(a)	1 otal	D1	9	Or aquivalant
2(a)	$\mathbf{r}_{A} = (3\mathbf{I} + 2\mathbf{J}) + (-5\mathbf{I} + 8\mathbf{J})t$	B1 B1	2	Or equivalent
	$\mathbf{r}_B = (-4\mathbf{i} + 7\mathbf{j}) + (2\mathbf{i} + 3\mathbf{j})t$			
(h)	When $t = 1$	M1		Substitution
(0)	$\mathbf{r}_{i} = \mathbf{r}_{i} = -2\mathbf{i} + 10\mathbf{i}$	A1	2	Simplification
	\rightarrow Collision		-	Simplification
	Alternative:			
	$\mathbf{r}_{i} = \mathbf{r}_{p}$	(M1)		Equate i or j
	$\Rightarrow 3-5t = -4+2t \Rightarrow t = 1$	(A1)		Complete solution
	and $2+8t=7+3t \Rightarrow t=1$			
(c)(i)	At time <i>T</i> after 1:45 am			
	$\mathbf{r} = (3\mathbf{i} + 2\mathbf{i}) + (-5\mathbf{i} + 8\mathbf{i})(T + \frac{3}{2})$			
	$A \left(\begin{array}{c} \mathbf{J} + \mathbf{J} \end{array} \right) \left(\begin{array}{c} \mathbf{J} + \mathbf{J} \end{array} \right) \left(\begin{array}{c} \mathbf{J} + \mathbf{J} \end{array} \right)$	MIAI M1A1		
	$\mathbf{r}_{p} = (-4\mathbf{i} + 7\mathbf{i}) + (2\mathbf{i} + 3\mathbf{i})^{\frac{3}{2}} + (2\mathbf{i} + 10\mathbf{i})T$	WIAI		
		m1		For $\mathbf{r}_B - \mathbf{r}_A$
	$_{A}\mathbf{r}_{B} = (7T - 1.75)\mathbf{i} + (2T + 1.25)\mathbf{j}$	A1	6	Answer given
<i>(</i> 1)				
(11)	At 2:00 am			
	$\int_{A} \mathbf{r}_{B} = \left(7 \times \frac{1}{4} - 1.75 \right) \mathbf{i} + \left(2 \times \frac{1}{4} + 1.25 \right) \mathbf{j}$	M1		
	=1 75i			
	The distance = 1.75 km	Α 1	2	
		AI	2	
	Total		12	

MM03	(cont)
-------------	--------

Q	Solution	Mark	Total	Comments
3(a)	By P.C.L.M.:			
	$4mu = 4mv_1 + 2mv_2$	M1		
	$2u = 2v_1 + v_2$ (1)			
	Law of restitution: $e = \frac{v_2 - v_1}{u}$ (2)	M1A1		A1 for both correct
	Solving (1) and (2) \rightarrow	m1		Dependent on both Ms
	$v_1 = \frac{2u - eu}{3}$			
	$v_2 = \frac{2u + 2eu}{3}$	A1F	5	A1F for both v_1 and v_2
(b)	$\frac{12mu}{5} = 4mu - 4m\left(\frac{2u - eu}{3}\right)$	M1A1 F		Impulse/Momentum
	$\left[\text{ or } = 2m \left(\frac{2u + 2eu}{3} \right) \right]$			
	20meu = 16mu			
	$e = \frac{4}{5}$	A1	3	Solution to get the right answer Answer given
(c)	$2mv_2 = 2mv_3 + mv_4$	M1		
	$\frac{v_4 - v_3}{v_2} = \frac{4}{5}$	M1		
	$v_2 = \frac{12u}{1}$	m1 A1F	4	Dependent on both Ms
	25			-
(d)	$v_1 = \frac{2u - \frac{4}{5}u}{\frac{3}{5}} = \frac{2u}{5}$	M1		
	$v_3 \succ v_1 \Longrightarrow A \text{ and } B \text{ will not collide again}$	E1F	2	
	Total		14	

MM03 (c	M03 (cont)				
Q	Solution	Marks	Total	Comments	
4(a)	Ball and plane are smooth \Rightarrow Mutual reaction acts along the normal to the plane at the point of impact \Rightarrow				
	No change in momentum parallel to plane	E2,1	2	1 mark per implication	
(b)	$\frac{3}{4} = \frac{v\sin\theta}{u\cos\theta} \text{ or } v\sin\theta = \frac{3}{4}u\cos\theta$	M1			
	$3u\cos\theta = 4v\sin\theta$	A1	2	Answer given	
(c)	$\begin{array}{c} u \sin \theta \\ \hline u \cos \theta \\ \hline \theta \\ \hline \theta \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} v \cos \theta \\ \hline v \cos \theta \\ \hline v \sin \theta \\ \hline \\ \theta \\ \hline \end{array} \\ \hline $ \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \\				
	$v\cos\theta = u\sin\theta$ $3u\cos\theta = 4u\tan\theta\sin\theta$ $\frac{3}{t} = \tan^2\theta$	M1 m1			
	$\theta = 40.9^{\circ}$	M1 A1	4	Answer given	
(d)	$I = mu\cos\theta - (mv\sin\theta)$	M1A1		Impulse momentum	
	$I = mu \cos \theta + mu \tan \theta \sin \theta$ $I = \frac{mu}{\cos \theta}$	ml A1F		Elimination of <i>v</i>	
	I = 1.32mu	Δ1	5	Answer given	
<u> </u>	Total		13		
	Iotui				

	Solution	Marke	Total	Comments
<u> </u>		1 1121 N3	IUTAI	Comments
5				
(a)	In j direction			
	$a = -g\cos 30$	M1		
	$0 = 90\sin 30t - 4.9\cos 30t^2$	M1		
		A1		
	$t = \frac{90 \sin 30}{1000}$			
	$1 - \frac{1}{4.9\cos 30}$	m1		
	<i>t</i> =10.6s	A1	5	Answer given
(b)	In i direction			
	$a=-g\sin 30$	M1A1		
	$OA = 90\cos 30(10.6) - 4.9\sin 30(10.6)^2$	M1A1		
	= 551 m	A1F	5	Must be >0.
(c)	The missile is at its max perpend			
	distance from the slope when yel is zero			
	$0 = 90\sin 30 - 9.8\cos 30t$	M1		Use of special results
	t=5.3	A1F		gains 3 out of 4 marks
	./3			
	$y = -\frac{\sqrt{3}}{4} \times 9.8(5.3)^2 + 45(5.3)$	M1		
	y = 119 metres	A1F	4	
	Total		14	
L				

MM03 (cont)

MM03 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$x = 40t \cos \alpha$	M1		
	$y = 40t\sin\alpha - \frac{1}{2}gt^2$	M1 A1		
	$t = \frac{x}{40\cos\alpha}$			
	$y = 40 \left(\frac{x}{40\cos\alpha}\right) \sin\alpha - \frac{1}{2}g \left(\frac{x}{40\cos\alpha}\right)^2$	ml		
	$y = x \tan \alpha - \frac{g x^2}{3200 \cos^2 \alpha}$			
	$y = x \tan \alpha - \frac{gx^2}{3200} \left(1 + \tan^2 \alpha\right)$	A1	5	Answer given
(b)	$4 = 100 \tan \alpha - \frac{9.8 \times 100^2}{3200} \left(1 + \tan^2 \alpha\right)$	M1		
	$245\tan^2\alpha - 800\tan\alpha + 277 = 0$	M1A1		
	$\tan \alpha = \frac{400 \pm \sqrt{(-400)^2 - (245)(277)}}{245}$	M1 A1F		Or equivalent
	$\alpha = 71^{\circ}, 21^{\circ} (22^{\circ} \text{ acceptable})$			
	(or 1.24 rad.,0.375 rad.)	A1F	6	AWRT (or equivalent in radians) Must be positive
(c)	The ball is a particle.	E1		
	No air resistance, etc	E1	2	
	Total		13	
	Total		75	