General Certificate of Education
June 2007
Advanced Level Examination

MATHEMATICS
MFP4
Unit Further Pure 4

Friday 22 June 20079.00 am to 10.30 am

## For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

## Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.


## Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.


## Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.


## Answer all questions.

1 Given that $\mathbf{a} \times \mathbf{b}=3 \mathbf{i}+\mathbf{j}+\mathbf{k}$ and that $\mathbf{a} \times \mathbf{c}=-\mathbf{i}-2 \mathbf{j}+\mathbf{k}$, determine:
(a) $\mathbf{c} \times \mathbf{a}$;
(1 mark)
(b) $\mathbf{a} \times(\mathbf{b}+\mathbf{c})$;
(c) $(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{a} \times \mathbf{c})$;
(d) $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{c})$.

2 Factorise completely the determinant $\left|\begin{array}{ccc}y & x & x+y-1 \\ x & y & 1 \\ y+1 & x+1 & 2\end{array}\right|$.

3 Three points, $A, B$ and $C$, have position vectors

$$
\mathbf{a}=\left[\begin{array}{r}
1 \\
7 \\
-1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right] \quad \text { and } \mathbf{c}=\left[\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right]
$$

respectively.
(a) Using the scalar triple product, or otherwise, show that $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are coplanar.
(2 marks)
(b) (i) Calculate $(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})$.
(ii) Hence find, to three significant figures, the area of the triangle $A B C$.

4 Consider the following system of equations, where $k$ is a real constant:

$$
\begin{aligned}
k x+2 y+z & =5 \\
x+(k+1) y-2 z & =3 \\
2 x-k y+3 z & =-11
\end{aligned}
$$

(a) Show that the system does not have a unique solution when $k^{2}=16$.
(b) In the case when $k=4$, show that the system is inconsistent.
(c) In the case when $k=-4$ :
(i) solve the system of equations;
(ii) interpret this result geometrically.
$\mathbf{5} \quad$ The line $l$ has equation $\mathbf{r}=\left[\begin{array}{r}3 \\ 26 \\ -15\end{array}\right]+\lambda\left[\begin{array}{r}8 \\ -4 \\ 1\end{array}\right]$.
(a) Show that the point $P(-29,42,-19)$ lies on $l$.
(b) Find:
(i) the direction cosines of $l$;
(ii) the acute angle between $l$ and the $z$-axis.
(c) The plane $\Pi$ has cartesian equation $3 x-4 y+5 z=100$.
(i) Write down a normal vector to $\Pi$.
(ii) Find the acute angle between $l$ and this normal vector.
(d) Find the position vector of the point $Q$ where $l$ meets $\Pi$.
(e) Determine the shortest distance from $P$ to $\Pi$.

6 The matrices $\mathbf{A}$ and $\mathbf{B}$ are given by

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & t
\end{array}\right]
$$

(a) Find, in terms of $t$, the matrices:
(i) $\mathbf{A B}$;
(3 marks)
(ii) $\mathbf{B A}$.
(2 marks)
(b) Explain why $\mathbf{A B}$ is singular for all values of $t$.
(c) In the case when $t=-2$, show that the transformation with matrix $\mathbf{B A}$ is the combination of an enlargement, E, and a second transformation, F. Find the scale factor of $E$ and give a full geometrical description of $F$.

7 (a) The matrix $\mathbf{M}=\left[\begin{array}{ll}-1 & 2 \\ -2 & 3\end{array}\right]$ represents a shear.
(i) Find $\operatorname{det} \mathbf{M}$ and give a geometrical interpretation of this result.
(2 marks)
(ii) Show that the characteristic equation of $\mathbf{M}$ is $\lambda^{2}-2 \lambda+1=0$, where $\lambda$ is an eigenvalue of $\mathbf{M}$.
(iii) Hence find an eigenvector of $\mathbf{M}$.
(iv) Write down the equation of the line of invariant points of the shear.
(b) The matrix $\mathbf{S}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ represents a shear.
(i) Write down the characteristic equation of $\mathbf{S}$, giving the coefficients in terms of $a, b, c$ and $d$.
(ii) State the numerical value of $\operatorname{det} \mathbf{S}$ and hence write down an equation relating $a, b, c$ and $d$.
(iii) Given that the only eigenvalue of $\mathbf{S}$ is 1 , find the value of $a+d$.

