MATHEMATICS
MFP4
Unit Further Pure 4

Wednesday 30 January 20089.00 am to 10.30 am

For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 Give a full geometrical description of the transformation represented by each of the following matrices:
(a) $\left[\begin{array}{ccc}0.8 & 0 & -0.6 \\ 0 & 1 & 0 \\ 0.6 & 0 & 0.8\end{array}\right]$;
(b) $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.

2 It is given that $\mathbf{a}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{i}+\mathbf{j}-5 \mathbf{k}$ and $\mathbf{c}=\mathbf{i}+4 \mathbf{j}+28 \mathbf{k}$.
(a) Determine:
(i) $\mathbf{a} \cdot \mathbf{b}$;
(1 mark)
(ii) $\mathbf{a} \times \mathbf{b}$;
(2 marks)
(iii) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$.
(b) Describe the geometrical relationship between the vectors:
(i) \mathbf{a}, \mathbf{b} and $\mathbf{a} \times \mathbf{b}$;
(ii) \mathbf{a}, \mathbf{b} and \mathbf{c}.

3 A shear S is represented by the matrix $\mathbf{A}=\left[\begin{array}{rr}p & q \\ -q & r\end{array}\right]$, where p, q and r are constants.
(a) By considering one of the geometrical properties of a shear, explain why $p r+q^{2}=1$.
(b) Given that $p=4$ and that the image of the point $(-1,2)$ under S is $(2,-1)$, find:
(i) the value of q and the value of r;
(ii) the equation of the line of invariant points of S .

4 The matrix \mathbf{T} has eigenvalues 2 and -2 , with corresponding eigenvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ respectively.
(a) Given that $\mathbf{T}=\mathbf{U} \mathbf{D} \mathbf{U}^{-1}$, where \mathbf{D} is a diagonal matrix, write down suitable matrices \mathbf{U}, \mathbf{D} and \mathbf{U}^{-1}.
(b) Hence prove that, for all even positive integers n,

$$
\mathbf{T}^{n}=\mathrm{f}(n) \mathbf{I}
$$

where $\mathrm{f}(n)$ is a function of n, and \mathbf{I} is the 2×2 identity matrix.

5 A system of equations is given by

$$
\begin{aligned}
x+3 y+5 z & =-2 \\
3 x-4 y+2 z & =7 \\
a x+11 y+13 z & =b
\end{aligned}
$$

where a and b are constants.
(a) Find the unique solution of the system in the case when $a=3$ and $b=2$. (5 marks)
(b) (i) Determine the value of a for which the system does not have a unique solution.
(3 marks)
(ii) For this value of a, find the value of b such that the system of equations is consistent.
$6 \quad$ (a) The line l has equation $\mathbf{r}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]+\lambda\left[\begin{array}{l}3 \\ 2 \\ 6\end{array}\right]$.
(i) Write down a vector equation for l in the form $(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0}$.
(1 mark)
(ii) Write down cartesian equations for l.
(iii) Find the direction cosines of l and explain, geometrically, what these represent.
(b) The plane Π has equation $\mathbf{r}=\left[\begin{array}{l}7 \\ 5 \\ 1\end{array}\right]+\lambda\left[\begin{array}{l}4 \\ 3 \\ 2\end{array}\right]+\mu\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$.
(i) Find an equation for Π in the form $\mathbf{r} . \mathbf{n}=d$.
(ii) State the geometrical significance of the value of d in this case.
(c) Determine, to the nearest 0.1°, the angle between l and Π.

7 The non-singular matrix $\mathbf{M}=\left[\begin{array}{rrr}2 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2\end{array}\right]$.
(a) (i) Show that

$$
\mathbf{M}^{2}+2 \mathbf{I}=k \mathbf{M}
$$

for some integer k to be determined.
(ii) By multiplying the equation in part (a)(i) by \mathbf{M}^{-1}, show that

$$
\mathbf{M}^{-1}=a \mathbf{M}+b \mathbf{I}
$$

for constants a and b to be found.
(b) (i) Determine the characteristic equation of \mathbf{M} and show that \mathbf{M} has a repeated eigenvalue, 1 , and another eigenvalue, 2 .
(ii) Give a full set of eigenvectors for each of these eigenvalues.
(iii) State the geometrical significance of each set of eigenvectors in relation to the transformation with matrix \mathbf{M}.

END OF QUESTIONS

