

General Certificate of Education

Mathematics 6360

MFP4 Further Pure 4

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

Key to mark scheme and abbreviations used in marking

M	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
A	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
E	mark is for explanation			
or ft or F	follow through from previous			
	incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read	
CSO	correct solution only	RA	required accuracy	
AWFW	anything which falls within	FW	further work	
AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF	any correct form	FIW	from incorrect work	
AG	answer given	BOD	given benefit of doubt	
SC	special case	WR	work replaced by candidate	
OE	or equivalent	FB	formulae book	
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
–x EE	deduct x marks for each error	G	graph	
NMS	no method shown	c	candidate	
PI	possibly implied	sf	significant figure(s)	
SCA	substantially correct approach	dp	decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	1	B1		
(b)	– 1	B1		
(c)	1	B1		
(d)	9	B1	4	
(u)	Total	Di	4	
2(a)	$\overrightarrow{AB} \times \overrightarrow{AD} = \begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix} \times \begin{bmatrix} -8 \\ 7 \\ 3 \end{bmatrix}$	M1		Attempt at vector product of any two suitable vectors
	$= \begin{bmatrix} 21\\12\\28 \end{bmatrix}$	A1		
	$\sqrt{21^2 + 12^2 + 28^2}$	M1		Magnitude of this attempted
	= 37	A1	4	ft on minus signs only AG
(b)	$\overrightarrow{AB} \times \overrightarrow{AD} \bullet \overrightarrow{AE} = \begin{bmatrix} 21\\12\\28 \end{bmatrix} \bullet \begin{bmatrix} 2\\1\\6 \end{bmatrix} = 222$	M1 A1	2	Attempt at scalar triple product (or ≡) on any 3 suitable vectors ft
(c)	Distance = $(b) / 37 = 6$	M1A1	2	ft; must be "deduced"
	Total		8	
3(a)	$\begin{bmatrix} 32-4t & 0 & 0\\ 98-2t^2 & 4t-24 & 2t-14\\ 28-4t & 0 & 4 \end{bmatrix}$	M1 A1 A1		Decent attempt at AB ≥ 5 correct all correct
	t = 7	A1		Allow this ft if only 1 or 2 elements of AB incorrect
	AB = 4I	A 1	5	Must be from AB completely correct
(b)	$\mathbf{A}^{-1} = \frac{1}{4} \begin{bmatrix} 15 & -4 & -1 \\ -14 & 4 & 2 \\ 17 & -4 & -3 \end{bmatrix}$	B1 B1	2	ft 1/det if related to B CAO; must be "deduced" NB "\frac{1}{4}\mathbf{B}\" scores B1 only
	Total		7	

MFP4 (cont)

Q Solution Marks Total Comments 4(a) $\begin{vmatrix} 1 & -2 & k \\ k+1 & 3 & 0 \\ 2 & 1 & k-1 \end{vmatrix} = 3k^2 - 2k - 5$ M1 Attempt at det. of coefft. mtx. Correct (b) $5 = x - 2y + \frac{5}{3}z$ M1 Setting det. = 0 and solving for k (b) $5 = x - 2y + \frac{5}{3}z$ M1 Eliminating one variable twice $k - \frac{5}{3} \Rightarrow \frac{5}{3} = \frac{8}{3}x + 3y$ B1 ft $8x + 9y = 5/15y - 8z = -21/5x + 3z = 11$ A1;A1 Correct eqn. once; twice $5 = x - 2y - z$ M1 Eliminating one variable twice $5 = x - 2y - z$ M1 Eliminating one variable twice $x - z = \frac{13}{3}/2x - 2z = \frac{10}{3}/5x - 5z = 11$ M1 Eliminating one variable twice $x - z = \frac{13}{3}/2x - 2z = \frac{10}{3}/5x - 5z = 11$ Inconsistency correctly shown $y - \frac{1}{3}$ and $y - \frac{7}{5}$ found A1 8 Total 12 Solution Use of $\begin{bmatrix} x \\ 2x + 1 \end{bmatrix}$; either term correct giving $y = 1 - x$ A1 A1 AB attempted (c) $\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} z & 5 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 5 & 13 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ M1 AB attempted	MFP4 (cont)		Г		1
(b) $5 = x - 2y + \frac{5}{3}z$ $k = \frac{5}{3} \Rightarrow \frac{5}{3} = \frac{8}{3}x + 3y$ B1 ft Eliminating one variable twice $8x + 9y = 5/15y - 8z = -21/5x + 3z = 11$ A1;A1 Correct eqn. once; twice $x - 2y - z = x - 1$	Q	Solution	Marks	Total	Comments
(b) $ 5 = x - 2y + \frac{5}{3}z $ $ k = \frac{5}{3} \Rightarrow \frac{5}{3} = \frac{8}{3}x + 3y $ $ 3 = 2x + y + \frac{2}{3}z $ $ M1 $ $ 8x + 9y = 5/15y - 8z = -21/5x + 3z = 11 $ $ 8x$	4(a)	$\begin{vmatrix} 1 & -2 & k \\ k+1 & 3 & 0 \\ 2 & 1 & k-1 \end{vmatrix} = 3k^2 - 2k - 5$			
(b) $ 5 = x - 2y + \frac{5}{3}z $ $ k - \frac{5}{3} \Rightarrow \frac{5}{3} = \frac{8}{3}x + 3y $ $ 3 = 2x + y + \frac{2}{3}z $ $ 8x + 9y = 5 / 15y - 8z = -21 / 5x + 3z = 11 $ $ 8x + 9y = 5 / 15y - 8z = -21 / 5x + 3z = 11 $ $ 8x + 9y = 5 / 15y - 8z = -21 / 5x + 3z = 11 $ $ 5 = x - 2y - z $ $ k = -1 \Rightarrow -1 = 3y $ $ 3 = 2x + y - 2z $ $ M1 $ $ 6x $			M1		Setting det. = 0 and solving for k
$k = \frac{5}{3} \Rightarrow \frac{5}{3} = \frac{8}{3}x + 3y$ $3 = 2x + y + \frac{2}{3}z$ M1 Eliminating one variable twice $8x + 9y = 5/15y - 8z = -21/5x + 3z = 11$ A1;A1 Correct eqn. once; twice $5 = x - 2y - z$ $k = -1 \Rightarrow -1 = 3y$ $3 = 2x + y - 2z$ M1 Eliminating one variable twice $x - z = \frac{13}{3}/2x - 2z = \frac{10}{3}/5x - 5z = 11$ OR $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ A1 Eliminating one variable twice $x - z = \frac{13}{3}/2x - 2z = \frac{10}{3}/5x - 5z = 11$ OR $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ A1 8 Total 12 $5(a) \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} x \\ 2x + 1 \end{bmatrix} = \begin{bmatrix} x - 1 \\ -x + 2 \end{bmatrix}$ M1 Use of $\begin{bmatrix} x \\ 2x + 1 \end{bmatrix}$; either term correct giving $y = 1 - x$ A1 3 CSO (b) Finding det(B) (= 1) and mult \(\frac{g}{2} \), by 4.5 \(-5 \) 2 \(\frac{g}{5} \) 13 \(-5 \) 2 \(\frac{1}{5} \) 13 \(-5 \) 1		$k=\frac{5}{3},-1$	A1	4	
$3 = 2x + y + \frac{2}{3}z$ M1 $8x + 9y = 5/15y - 8z = -21/5x + 3z = 11$ $5 = x - 2y - z$ $k = -1 \Rightarrow -1 = 3y$ $3 = 2x + y - 2z$ M1 $x - z = \frac{13}{3}/2x - 2z = \frac{10}{3}/5x - 5z = 11$ OR $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ A1 $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ A1 S(a) $\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} x \\ 2x + 1 \end{bmatrix} = \begin{bmatrix} x - 1 \\ -x + 2 \end{bmatrix}$ M1 A1 Use of $\begin{bmatrix} x \\ 2x + 1 \end{bmatrix}$; either term correct giving $y = 1 - x$ A1 3 CSO (b) Finding $\det(\mathbf{B}) (= 1)$ and mult^8 , by 4.5 $= 4.5 \operatorname{cm}^2$ A1 A1 A1 AB attempted AB attempted	(b)	$5 = x - 2y + \frac{5}{3}z$			
$8x + 9y = 5/15y - 8z = -21/5x + 3z = 11$ $8x + 9y = 5/15y - 8z = -21/5x + 3z = 11$ $5 = x - 2y - z$ $k = -1 \Rightarrow -1 = 3y$ $3 = 2x + y - 2z$ $A1$ OR $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $A1$ $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $A1$ $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $A1$ $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $A1$ $x = \frac{12}{5(a)} \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} x \\ 2x + 1 \end{bmatrix} = \begin{bmatrix} x - 1 \\ -x + 2 \end{bmatrix}$ $y = 1 - x$ $y = \frac{1}{3} \text{ and } y = $		5 5 5	B1		ft
8x + 9y = 5 / 15y - 8z = -21 / 5x + 3z = 11 A1;A1		$3 = 2x + y + \frac{2}{3}z$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			M1		Eliminating one variable twice
$k = -1 \implies -1 = 3y$ $3 = 2x + y - 2z$ $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ OR $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $A1$ $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $A1$ $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $A1$ $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $A1$ $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $A1$ $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $A1$ $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $A1$ $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $y = -\frac{1}{3} \text{ and } y = -\frac{1}{$		8x + 9y = 5 / 15y - 8z = -21 / 5x + 3z = 11	A1;A1		Correct eqn. once; twice
$x-z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ OR $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ A1 A1 Binconsistency correctly shown $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = 10$		5 = x - 2y - z			
$x-z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ OR $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ A1 A1 Binconsistency correctly shown $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$ A1 Binconsistency correctly shown $x - z = \frac{10}{3} / 2x - 2z = 10$		$k = -1 \implies -1 = 3y$ $3 = 2x + y - 2z$	B1		ft
OR $y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ A1 A1 B Total S(a) $\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} x \\ 2x+1 \end{bmatrix} = \begin{bmatrix} x-1 \\ -x+2 \end{bmatrix}$ A1 B Use of $\begin{bmatrix} x \\ 2x+1 \end{bmatrix}$; either term correct giving $y = 1 - x$ A1 B CSO (b) Finding det(B) (= 1) and mult ^B . by 4.5 $= 4.5 \text{ cm}^{2}$ A1 A1 AB attempted This is a shear M1 A1 AB AB attempted			M1		Eliminating one variable twice
$y = -\frac{1}{3} \text{ and } y = -\frac{7}{5} \text{ found}$ $Total$ $5(a) \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} x \\ 2x+1 \end{bmatrix} = \begin{bmatrix} x-1 \\ -x+2 \end{bmatrix}$ $giving \ y = 1-x$ $(b) Finding det(B) (= 1) and multg. by 4.5 and since the sum of the sum of$		$x-z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$			
Total 5(a) $\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} x \\ 2x+1 \end{bmatrix} = \begin{bmatrix} x-1 \\ -x+2 \end{bmatrix}$ Giving $y = 1-x$ (b) Finding $\det(\mathbf{B}) (=1)$ and mult^g . by 4.5 $= 4.5 \operatorname{cm}^2$ Al Al B attempted This is a shear M1 AB attempted			A1		Inconsistency correctly shown
5(a) $\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} x \\ 2x+1 \end{bmatrix} = \begin{bmatrix} x-1 \\ -x+2 \end{bmatrix}$ M1 A1 Use of $\begin{bmatrix} x \\ 2x+1 \end{bmatrix}$; either term correct Giving $y = 1 - x$ A1 A1 CSO (b) Finding $\det(\mathbf{B}) (= 1)$ and mult^g by 4.5 $= 4.5 \operatorname{cm}^2$ A1 A1 A1 A1 A1 AB attempted AB attempted This is a shear		$y = -\frac{1}{3}$ and $y = -\frac{1}{5}$ found	A1		
giving $y = 1 - x$ A1 3 CSO (b) Finding $\det(\mathbf{B})$ (= 1) and mult ^g . by 4.5 $= 4.5 \text{ cm}^2$ A1 A1 2 ft AB attempted This is a shear M1 This is a shear				12	
(b) Finding $det(\mathbf{B})$ (= 1) and mult ^g . by 4.5 $= 4.5 \text{ cm}^{2}$ M1 A1 $\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 5 & 13 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ M1 AB attempted This is a shear M1	5(a)	$\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} x \\ 2x+1 \end{bmatrix} = \begin{bmatrix} x-1 \\ -x+2 \end{bmatrix}$			Use of $\begin{bmatrix} x \\ 2x+1 \end{bmatrix}$; either term correct
		giving $y = 1 - x$	A1	3	CSO
This is a shear M1	(b)			2	ft
	(c)	$\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 5 & 13 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$			AB attempted
mapping (eg) $(1, 1)$ to $(3, 1)$ A1 5 Any point not on Ox and its image		mapping (eg) (1, 1) to (3, 1)	A1	5	Any point not on <i>Ox</i> and its image
Total 10		Total		10	

MFP4 (cont)

MFP4 (cont)	0.1.4	3.6	TE ()	
Q	Solution	Marks	Total	Comments
6(a)(i)	$\begin{bmatrix} 6 \\ -3 \\ 2 \end{bmatrix} \bullet \begin{bmatrix} 4p+1 \\ p-2 \\ 1 \end{bmatrix} = 0$	M1		Equating dot product to zero
	24p + 6 - 3p + 6 + 2 = 0	M1		Solving a linear eqn. in <i>t</i>
	$p = -\frac{2}{3}$	A1	3	CAO
	$\begin{bmatrix} 6 \\ -3 \\ 2 \end{bmatrix} = m \begin{bmatrix} 4p+1 \\ p-2 \\ 1 \end{bmatrix}$	M1		
	$m=2, p=\frac{1}{2}$	A1,A1	3	
	$ \underline{\mathbf{ALT}} \begin{bmatrix} 6 \\ -3 \\ 2 \end{bmatrix} \times \begin{bmatrix} 4p+1 \\ p-2 \\ 1 \end{bmatrix} = 0 \begin{bmatrix} 1-2p \\ 8p-4 \\ 18p-9 \end{bmatrix} $	(M1A1)		
	$p = \frac{1}{2}$	(A1)		
(b)(i)	6x - 3y + 2z = 42, $17x + 2y + z = -7$	B1,B1	2	
(ii)	eg 2.② – ①: $7[4x + y = -8]$	M1A1		Eliminating one variable; correct
	$\frac{x+2}{-1} = \frac{y}{4} = \lambda$	M1		Parametrisation attempt
	Substituting back to find 3^{rd} variable $z = 9\lambda + 27$	m1 A1		- Carana and a same and a same a
	$\mathbf{r} = \begin{bmatrix} 0 \\ -8 \\ 9 \end{bmatrix}, \begin{bmatrix} 1 \\ -12 \\ 0 \end{bmatrix} \mathbf{or} \begin{bmatrix} -2 \\ 0 \\ 27 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 4 \\ 9 \end{bmatrix}$	B1	6	ft (any pt. on l)
	OR method for finding the d.v. $\begin{bmatrix} -1\\4\\9 \end{bmatrix}$	(M2A1)		
	Method for finding any pt. on <i>l</i> Putting them together as a line eqn.	(M1A1) (B1)		ft
(c)	$\mathbf{r} = \mathbf{a} + u \mathbf{d}_1 + v \mathbf{d}_2$ where \mathbf{a} is an pt. on plane $\mathbf{d}_1 = \text{any d.v.}$ $\lceil 30 \rceil$			ft their previous a ; or (30, 7, 30) ft their previous d.v.
	$\mathbf{d}_2 = \begin{bmatrix} 7 \\ 30 \end{bmatrix} - \text{ any } \mathbf{a} \text{ in plane}$		2	ft if is clear where it has come from
	Total		16	

MFP4 (cont)

0	Solution	Marks	Total	Comments
7(a)(i)	$R_1' = R_1 + R_2$ or $R_2' = R_2 + R_1$	M1	1 Utal	Comments
/(a)(i)	leading to $R_{1/2} = (4 - q 4 - q 0)$	A1	2	
	reading to $R_{1/2}$ (1 q 1 q 0)	7 1 1	2	
(ii)	1			
	A = (A a) 12 1 a 7			
	$\Delta = (4-q) \begin{bmatrix} -12 & -1-q & -1 \\ 0 & 0 & 10 \end{bmatrix}$			
	$\Delta = (4-q) \begin{vmatrix} 1 & 1 & 0 \\ -12 & -1-q & -7 \\ 6 & 6 & 10-q \end{vmatrix}$			
	$= (4-q) \begin{vmatrix} 0 & 1 & 0 \\ q-11 & -1-q & -7 \\ 0 & 6 & 10-q \end{vmatrix}$			
	$= (4-q) \begin{vmatrix} q-11 & -1-q & -7 \end{vmatrix}$	M1		By $C_1' = C_1 - C_2$ (eg)
	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $			
	0 1 0			
	$= (4-q)(q-11) \begin{vmatrix} 1 & -1-q & -7 \end{vmatrix}$	A 1		2 nd linear factor correct
	$= (4-q)(q-11) \begin{vmatrix} 0 & 1 & 0 \\ 1 & -1-q & -7 \\ 0 & 6 & 10-q \end{vmatrix}$			
		M1		Full attempt at 3 rd factor
	$= (4-q)(q-11) \times$ = $(4-q)(q-11)(q-10)$	A1	4	_
(b)(i)	$\begin{bmatrix} 16 & 5 & 7 \\ -12 & -1 & -7 \\ 6 & 6 & 10 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ -7 \end{bmatrix} = \begin{bmatrix} 8 \\ 20 \\ -28 \end{bmatrix}$			
	$\begin{vmatrix} -12 & -1 & -7 \end{vmatrix} \begin{vmatrix} 5 \end{vmatrix} = \begin{vmatrix} 20 \end{vmatrix}$	M1A1		
	6 6 10 -7 -28			
	$= 4 \begin{bmatrix} 2 \\ 5 \\ 7 \end{bmatrix} \text{ so that } \lambda = 4$			
	$= 4 \mid 5 \mid$ so that $\lambda = 4$	A1	3	
	7			
(ii)	$\lambda = 10$, 11 noted or used	B1		ft
	0 = 6x + 5y + 7z			
	$\lambda = 10 \implies 0 = -12x - 11y - 7z$	B1		
	0 = 6x + 6y			
	Ž			
	Using $y = -x$ to get $z \sim x / y$	M1		
	Eigenvector (-7, 7, 1)	A1		Any non-zero multiple will do
				•
	0 = 5x + 5y + 7z			
	$\lambda = 11 \implies 0 = -12x - 12y - 7z$	B1		
	0 = 6x + 6y - z			
	2 0 5y 2			
	Either $y = -x$ or $z = 0$	M1		
	Eigenvector $(1, -1, 0)$	A1	7	Any non-zero multiple will do
			-	1
(c)	$x _ y _ z $) A 1		Amyline ages
	$\frac{x}{2} = \frac{y}{5} = \frac{z}{-7}, \frac{x}{-7} = \frac{y}{7} = z$	M1		Any line eqns.
	or $x = -y, z = 0$	A1	2	any one ft correct
	Total		18	
	TOTAL		75	