General Certificate of Education
June 2008
Advanced Level Examination

MATHEMATICS
MFP3

Unit Further Pure 3

Monday 16 June 20081.30 pm to 3.00 pm

For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=\ln (x+y)
$$

and

$$
y(2)=3
$$

Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.1$, to obtain an approximation to $y(2.1)$, giving your answer to four decimal places.

2 (a) Find the values of the constants a, b, c and d for which $a+b x+c \sin x+d \cos x$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}-3 y=10 \sin x-3 x \tag{4marks}
\end{equation*}
$$

(b) Hence find the general solution of this differential equation.

3 (a) Show that $x^{2}=1-2 y$ can be written in the form $x^{2}+y^{2}=(1-y)^{2} . \quad$ (1 mark)
(b) A curve has cartesian equation $x^{2}=1-2 y$.

Find its polar equation in the form $r=\mathrm{f}(\theta)$, given that $r>0$.

4 (a) A differential equation is given by

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}
$$

Show that the substitution

$$
u=\frac{\mathrm{d} y}{\mathrm{~d} x}
$$

transforms this differential equation into

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} x}-\frac{1}{x} u=3 x \tag{2marks}
\end{equation*}
$$

(b) By using an integrating factor, find the general solution of

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}-\frac{1}{x} u=3 x
$$

giving your answer in the form $u=\mathrm{f}(x)$.
(c) Hence find the general solution of the differential equation

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}
$$

giving your answer in the form $y=\mathrm{g}(x)$.

5 (a) Find $\int x^{3} \ln x \mathrm{~d} x$.
(b) Explain why $\int_{0}^{\mathrm{e}} x^{3} \ln x \mathrm{~d} x$ is an improper integral.
(c) Evaluate $\int_{0}^{\mathrm{e}} x^{3} \ln x \mathrm{~d} x$, showing the limiting process used.

6 (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=10 \mathrm{e}^{-2 x}-9 \tag{10marks}
\end{equation*}
$$

(b) Hence express y in terms of x, given that $y=7$ when $x=0$ and that $\frac{\mathrm{d} y}{\mathrm{~d} x} \rightarrow 0$ as $x \rightarrow \infty$.

7 (a) Write down the expansion of $\sin 2 x$ in ascending powers of x up to and including the term in x^{3}.
(b) (i) Given that $y=\sqrt{3+\mathrm{e}^{x}}$, find the values of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=0$. (5 marks)
(ii) Using Maclaurin's theorem, show that, for small values of x,

$$
\begin{equation*}
\sqrt{3+\mathrm{e}^{x}} \approx 2+\frac{1}{4} x+\frac{7}{64} x^{2} \tag{2marks}
\end{equation*}
$$

(c) Find

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left[\frac{\sqrt{3+\mathrm{e}^{x}}-2}{\sin 2 x}\right] \tag{3marks}
\end{equation*}
$$

8 The polar equation of a curve C is

$$
r=5+2 \cos \theta, \quad-\pi \leqslant \theta \leqslant \pi
$$

(a) Verify that the points A and B, with polar coordinates $(7,0)$ and $(3, \pi)$ respectively, lie on the curve C.
(b) Sketch the curve C.
(c) Find the area of the region bounded by the curve C.
(d) The point P is the point on the curve C for which $\theta=\alpha$, where $0<\alpha \leqslant \frac{\pi}{2}$. The point Q lies on the curve such that $P O Q$ is a straight line, where the point O is the pole. Find, in terms of α, the area of triangle $O Q B$.

END OF QUESTIONS

