General Certificate of Education
Advanced Level Examination January 2010

## Mathematics

## MFP2

## Unit Further Pure 2

## Friday 15 January 20101.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

## Time allowed

- 1 hour 30 minutes


## Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.


## Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .


## Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Use the definitions $\cosh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$ and $\sinh x=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)$ to show that

$$
\begin{equation*}
\cosh ^{2} x-\sinh ^{2} x=1 \tag{3marks}
\end{equation*}
$$

(b) (i) Express

$$
5 \cosh ^{2} x+3 \sinh ^{2} x
$$

in terms of $\cosh x$.
(ii) Sketch the curve $y=\cosh x$.
(iii) Hence solve the equation

$$
5 \cosh ^{2} x+3 \sinh ^{2} x=9.5
$$

giving your answers in logarithmic form.

2 (a) On the same Argand diagram, draw:
(i) the locus of points satisfying $|z-4+2 \mathrm{i}|=4$;
(ii) the locus of points satisfying $|z|=|z-2 \mathrm{i}|$.
(b) Indicate on your sketch the set of points satisfying both

$$
|z-4+2 \mathrm{i}| \leqslant 4
$$

and

$$
\begin{equation*}
|z| \geqslant|z-2 \mathrm{i}| \tag{2marks}
\end{equation*}
$$

3 The cubic equation

$$
2 z^{3}+p z^{2}+q z+16=0
$$

where $p$ and $q$ are real, has roots $\alpha, \beta$ and $\gamma$.
It is given that $\alpha=2+2 \sqrt{3} \mathrm{i}$.
(a) (i) Write down another root, $\beta$, of the equation.
(ii) Find the third root, $\gamma$.
(iii) Find the values of $p$ and $q$.
(b) (i) Express $\alpha$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(ii) Show that

$$
(2+2 \sqrt{3} \mathrm{i})^{n}=4^{n}\left(\cos \frac{n \pi}{3}+\mathrm{i} \sin \frac{n \pi}{3}\right)
$$

(iii) Show that

$$
\alpha^{n}+\beta^{n}+\gamma^{n}=2^{2 n+1} \cos \frac{n \pi}{3}+\left(-\frac{1}{2}\right)^{n}
$$

where $n$ is an integer.

4 A curve $C$ is given parametrically by the equations

$$
x=\frac{1}{2} \cosh 2 t, \quad y=2 \sinh t
$$

(a) Express

$$
\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}
$$

in terms of $\cosh t$.
(b) The arc of $C$ from $t=0$ to $t=1$ is rotated through $2 \pi$ radians about the $x$-axis.
(i) Show that $S$, the area of the curved surface generated, is given by

$$
S=8 \pi \int_{0}^{1} \sinh t \cosh ^{2} t \mathrm{~d} t
$$

(ii) Find the exact value of $S$.

5 The sum to $r$ terms, $S_{r}$, of a series is given by

$$
S_{r}=r^{2}(r+1)(r+2)
$$

Given that $u_{r}$ is the $r$ th term of the series whose sum is $S_{r}$, show that:
(a) (i) $u_{1}=6$;
(ii) $u_{2}=42$;
(iii) $\quad u_{n}=n(n+1)(4 n-1)$.
(b) Show that

$$
\sum_{r=n+1}^{2 n} u_{r}=3 n^{2}(n+1)(5 n+2)
$$

6 (a) Show that the substitution $t=\tan \theta$ transforms the integral

$$
\int \frac{\mathrm{d} \theta}{9 \cos ^{2} \theta+\sin ^{2} \theta}
$$

into

$$
\int \frac{\mathrm{d} t}{9+t^{2}}
$$

(b) Hence show that

$$
\int_{0}^{\frac{\pi}{3}} \frac{\mathrm{~d} \theta}{9 \cos ^{2} \theta+\sin ^{2} \theta}=\frac{\pi}{18}
$$

7 The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=2, \quad u_{k+1}=2 u_{k}+1
$$

(a) Prove by induction that, for all $n \geqslant 1$,

$$
u_{n}=3 \times 2^{n-1}-1
$$

(b) Show that

$$
\sum_{r=1}^{n} u_{r}=u_{n+1}-(n+2)
$$

8 (a) (i) Show that $\omega=\mathrm{e}^{\frac{2 \pi \mathrm{i}}{7}}$ is a root of the equation $z^{7}=1$. (1 mark)
(ii) Write down the five other non-real roots in terms of $\omega$. (2 marks)
(b) Show that

$$
\begin{equation*}
1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}=0 \tag{2marks}
\end{equation*}
$$

(c) Show that:
(i) $\quad \omega^{2}+\omega^{5}=2 \cos \frac{4 \pi}{7}$; (3 marks)
(ii) $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}=-\frac{1}{2}$.
(4 marks)

## END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

## There are no questions printed on this page

