

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
And an E	fallow through from provides				
or ft or F	follow through from previous	MC			
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2				
Q	Solution	Marks	Total	Comments
1(a)	1 1 $(r+1)^2 - r^2$	M1		
1(a)	$\frac{1}{r^2} - \frac{1}{(r+1)^2} = \frac{(r+1)^2 - r^2}{r^2 (r+1)^2}$	111		
	$=\frac{2r+1}{r^{2}(r+1)^{2}}$			
	$=\frac{1}{r^{2}(r+1)^{2}}$	A1	2	AG
(b)	$\frac{3}{1^2 \times 2^2} = \frac{1}{1^2} - \frac{1}{2^2}$			
(~)	$1^2 \times 2^2$ 1^2 2^2			
	5 1 1			
	$\frac{5}{2^2 \times 3^2} = \frac{1}{2^2} - \frac{1}{3^2}$			
	2 × 3 2 3			
	$\frac{7}{3^2 \times 4^2} = \frac{1}{3^2} - \frac{1}{4^2}$			
	$3^2 \times 4^2 3^2 4^2$	M1A1		A1 for at least 3 lines
	2n+1 1 1			
	$\frac{2n+1}{n^2(n+1)^2} = \frac{1}{n^2} - \frac{1}{(n+1)^2}$			
	n (n+1) n (n+1)			
	Clear cancellation	M1		
	$1 - \frac{1}{(n+1)^2}$	A1F	4	
	$(n+1)^{-1}$		-	
	Total		6	
2(a)	<i>p</i> = -4	B1		
	$(\alpha + \beta + \gamma)^2 = \sum \alpha^2 + 2\sum \alpha\beta$ 16 = 20 + 2\sum \alpha\beta	M1		
	$16 = 20 + 2\sum \alpha \beta$	A1		
	$\sum \alpha \beta = -2$	A1F		
	q = -2	A1F	5	
(b)	3-i is a root	B1		
	Third root is -2	DIE		
		B1F		
	$\alpha\beta\gamma = (3+i)(3-i)(-2)$	M1		
	ap = -20	A1F		Real $\alpha\beta\gamma$
	r = +20	AIF AIF	5	Real r
	Alternative to (b)			
	Substitute $3 + i$ into equation $(2 + i)^2 = 8 + 6i$	M1 B1		
	$\left(3+i\right)^2 = 8+6i$			
	$(3+i)^3 = 18 + 26i$	B1		
	<i>r</i> = 20 Total	A2,1,0	10	Provided <i>r</i> is real
	10181		10	

www.theallpapers.com

Q	Solution	Marks	Total	Comments
3(a)	$\frac{1+i}{1-i} = \frac{(1+i)^2}{1-i^2} = i$	M1A1	2	AG
(b)	$ z_2 = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1 = z_1 $	M1A1	2	
(c)	<i>r</i> = 1	B1		PI
	$\theta = \frac{1}{2}\pi, \ \frac{1}{3}\pi$	B1B1	3	Deduct 1 mark if extra solutions
(d)	$\begin{array}{c} y \\ z_1 \\ z_2 \\ \frac{1}{2}/3 \\ \frac{1}{2} \\ x \end{array}$	B2,1F	2	Positions of the 3 points relative to each other, must be approximately correct
(e)	$\operatorname{Arg}(z_1 + z_2) = \frac{5}{12}\pi$	B1		Clearly shown
	$\tan\frac{5}{12}\pi = \frac{1 + \frac{1}{2}\sqrt{3}}{\frac{1}{2}}$	M1		Allow if BO earned
	$=2+\sqrt{3}$	A1	3	AG must earn BO for this
	Total		12	

MFP2 (c	ont)
---------	------

Q	Solution	Marks	Total	Comments
4(a)	Assume result true for $n = k$ $\sum_{r=1}^{k} (r+1)2^{r-1} = k2^{k}$			
	$\sum_{r=1}^{k+1} (r+1)2^{r-1} = k2^k + (k+2)2^k$	M1A1		
	$=2^k\left(k+k+2\right)$	ml		
	$=2^{k}\left(2k+2\right)$			
	$=2^{k+1}(k+1)$	A1		
	$n = 1 \qquad 2 \times 2^0 = 2 = 1 \times 2^1$	B1		
	$P_k \Longrightarrow P_{k+1}$ and P_1 is true	E1	6	Provided previous 5 marks earned
(b)	$\sum_{r=1}^{2n} (r+1)2^{r-1} - \sum_{r=1}^{n} (r+1)2^{r-1}$	M1		Sensible attempt at the difference between 2 series
	$=2n\ 2^{2n}-n2^n$	A1		
	$= n \left(2^{n+1} - 1 \right) 2^n$	A1	3	AG
	Total		9	

Q	Solution	Marks	Total	Comments
5(a)	K L	B1		Circle
		B1		Correct centre
		B1	3	Touching both axes
(b)	$4 0 \qquad \bar{x}$ $ z \max = OK$	M1		Accept $\sqrt{4^2 + 4^2} + 4$ as a method
	$= \sqrt{4^2 + 4^2} + 4$ = 4($\sqrt{2}$ + 1)	A1F		Follow through circle in incorrect position
	$=4\left(\sqrt{2}+1\right)$	A1F	3	AG
(c)	Correct position of z , ie L	M1		
	$a = -\left(4 - 4\cos\frac{1}{6}\pi\right)$			
	$= -\left(4 - 2\sqrt{3}\right)$	A1F		Follow through circle in incorrect position
	$b=4+4\sin\frac{1}{6}\pi=6$	A1F	3	
	Tota	1	9	

FP2 (cont) Q	Solution	Marks	Total	Comments
Q		warks	Total	Comments
6(a)(i)	$z + \frac{1}{z} = \cos\theta + i\sin\theta + i00000000000000000000000000000000000$			Or $z + \frac{1}{z} = e^{i\theta} + e^{-i\theta}$
	$\cos(-\theta) + i\sin(-\theta)$	M1		2
	$=2\cos\theta$	Al	2	AG
	$= 2\cos\theta$	AI	Z	AU
(ii)	$z^2 + \frac{1}{z^2} = \cos 2\theta + i \sin 2\theta$			
	$+\cos(-2\theta)+i\sin(-2\theta)$	M1		
	$=2\cos 2\theta$	A1	2	OE
(iii)	$z^2 - z + 2 - \frac{1}{z} + \frac{1}{z^2}$			
	$= 2\cos 2\theta - 2\cos \theta + 2$	M1		
		1		
	Use of $\cos 2\theta = 2\cos^2 \theta - 1$	ml		
	$=4\cos^2\theta-2\cos\theta$	A1	3	AG
(b)	$z + \frac{1}{z} = 0$ $z = \pm i$	M1A1		
(~)	Ζ			Altownatives
	1			Alternative:
	$z + \frac{1}{z} = 1$ $z^2 - z + 1 = 0$	M1A1		$\cos\theta = 0 \qquad \theta = \pm \frac{1}{2}\pi \qquad M1$
	2			$\frac{1}{2}$
				$z = \pm i$ A1
	$z = \frac{1 \pm i\sqrt{3}}{2}$	A1F	5	$z = \pm i \qquad A1$ $\cos \theta = \frac{1}{2} \qquad \theta = \pm \frac{1}{3}\pi \qquad M1$
	2		5	
	Accept solution to (b) if done otherwise			$z = e^{\pm \frac{1}{3}\pi i} = \frac{1}{2} (1 \pm i\sqrt{3})$ A1 A1
	Alternative			
		M1		
	If $\theta = +\frac{1}{2}\pi \theta = -\frac{1}{3}\pi$			
		A1		
	$z = i z = \frac{1 + \sqrt{3}i}{2}$			
	Or any correct z values of θ	M1		
	Any 2 correct answers	A1		
	One correct answer only	B1		
	Total		12	

MFP2 (cont) Q	Solution	Marks	Total	Comments
	$2\left(\frac{e^{\theta} - e^{-\theta}}{2}\right)\left(\frac{e^{\theta} + e^{-\theta}}{2}\right)$			
	$=\frac{e^{2\theta}-e^{-2\theta}}{2}=\sinh 2\theta$	M1A1	2	AG
(ii)	$\left(\frac{\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}}{2}\right)^{2}+\left(\frac{\mathrm{e}^{\theta}+\mathrm{e}^{-\theta}}{2}\right)^{2}$	M1		
	$=\frac{e^{2\theta}-2+e^{-2\theta}+e^{2\theta}+2+e^{-2\theta}}{4}$ $=\cosh 2\theta$	A1 A1	3	AG
	- 051120	AI	5	AU
(b)(i)	$\dot{x} = 3\cosh^2\theta\sinh\theta''$	M1A1		Allow M1 for reasonable attempt at differentiation, but M0 for putting in terms of $e^{k\theta}$ or sinh 3θ unless real
	2			progress made towards $\dot{x}^2 + \dot{y}^2$
	$\dot{y} = 3\sinh^2\theta\cosh\theta$	A1		Allow this M1 if not squared out, must be clear sum in question is $\dot{x}^2 + \dot{y}^2$
	$\dot{x}^2 + \dot{y}^2 = 9\cosh^4\theta\sinh^2\theta$			
	+9 $\sinh^4 \theta \cosh^2 \theta$	M1		
	$=9\sinh^2\theta\cosh^2\theta\left(\cosh^2\theta+\sinh^2\theta\right)$	A1		AG Accept $\int_0^1 \sqrt{\frac{9}{4} \sinh^2 2\theta \cosh 2\theta} \mathrm{d}\theta$
				but limits must appear somewhere
	$=\frac{9}{4}\sinh^2 2\theta \cosh 2\theta$	A1	6	AG
(ii)	$S = \int_0^1 \frac{3}{2} \sinh 2\theta \sqrt{\cosh 2\theta} \mathrm{d}\theta$	M1		
	$u = \cosh 2\theta$ $du = 2 \sinh 2\theta d\theta$	M1A1		
	$I = \int \frac{3}{4} u^{\frac{1}{2}} du = \frac{3}{4} \times \frac{2}{3} u^{\frac{3}{2}}$	A1F		
	$S = \left\{ \frac{1}{2} (\cosh 2\theta)^{\frac{3}{2}} \right\}_{0}^{1}$ $= \frac{1}{2} \left\{ (\cosh 2)^{\frac{3}{2}} - 1 \right\}$	A1F		
	$=\frac{1}{2}\left\{\left(\cosh 2\right)^{\frac{3}{2}}-1\right\}$	A1	6	AG
	Total		17	
	TOTAL		75	

www.theallpapers.com