GCE 2005

January Series

Mark Scheme

Mathematics

MFP1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	ŌE	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

MFP1

Q	Solution	Marks	Totals	Comments
1(a)	$\alpha + \beta = 5, \alpha \beta = -2$	B1, B1	2	
(b)	$\alpha^2\beta + \alpha\beta^2 = \alpha\beta(\alpha + \beta) = -10$	M1A1√	2	ft wrong values
(c)	$(\alpha^2\beta)(\alpha\beta^2) = (\alpha\beta)^3 = -8$	M1A1√		ft wrong values
	Equation is $r^2 + 10r - 8 = 0$	A1√	3	Den on both M1s: ft wrong values:
	Equation is $x + 10x = 0$	111 *	5	Condone omission of "= 0 "
	Total		7	
2(a)	Correct shape	B1		
	Coordinates $(\pm 3, 0)$, $(0, \pm 2)$ shown	B2,1	3	Allow labels on sketch
(h)	Attract to color $1 + y^2 = 1$	M1		
(U)	Attempt to solve $\frac{-+-}{9} = 1$	1111		
		1		$\overline{32}$
	At least one correct root	mı		Allow decimals; allow $\sqrt{9}$
	+4/2	A 1	2	
	$y \equiv \pm \frac{1}{3}\sqrt{2}$	AI	3	
(c)	Eqn is $\frac{(x-1)^2}{x} + \frac{y^2}{x} = 1$	M1A1	2	M1A0 for eg wrong sign
	9 4			
	Total		8	
3(a)	$z^* = x - 1y$	BI	1	
ക്ര	$\mathbf{R} = 2\mathbf{x} - \mathbf{v}$	B 1		$i^2 - 1$ must be used
(0)		DI		1 – – 1 must be used
	$\mathbf{I} = -x + 2y$	B1	2	Condone $1 = i(x+2y);$
				Answers may appear in (c)
(c)	Equating R and/or I parts	M1		
	Attempt to solve sim equations	m1		
	z = 1 + 2i	A1	3	Allow $x = 1$, $y = 2$
	Total		6	

Q	Solution	Marks	Totals	Comments
4(a)	$\int x^{-3} \mathrm{d}x = k x^{-2} (+c)$	M1		
	$x^{-n} \to 0 \text{ as } x \to \infty$	M1		
	Improper integral has value 1	A1	3	
(b)	No value as <i>x</i> term tends to ∞	B1	1	OE
(c)	$\int x^{-2} \mathrm{d}x = k x^{-1} (+c)$	M1		
	$r^{-1} \rightarrow 0$ as $r \rightarrow \infty$	m1		
	Improper integral has value 5	A1	3	
	Total		7	
5(a)	Transformation is a reflection in $y = x$	B2	2	
(b)	Matrix is $\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$	M1 A2,1	3	M1 for matrix for a rotation; A1 for correct trig expressions
(c)	Attempt to multiply the matrices	M1		
	Matrix is $\begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$	mı A1√	3	Wrong answer to (b)
	Total		8	
6(a)	Attempt at $\cos^{-1}\frac{1}{\sqrt{2}}$	M1		Allow degrees or decimals
	$\frac{\pi}{4}$ appearing in solution	A1		Must be exact
	Introduction of \pm Introduction of + $2n\pi$	M1 M1		Or 360 <i>n</i>
	Making x the subject	M1		From $2x + \frac{\pi}{6} = kn\pi + \alpha(\text{or} \pm \alpha)$
	$x = -\frac{\pi}{12} \pm \frac{\pi}{8} + n\pi$	A1	6	OE
(b)	No of roots is 4	M1A1√	2	M1 e.g. for answer consistent with c's general solution
	Total		8	

MFP1 (cont)

MFP1 (cont)

Q	Solution	Marks	Totals	Comments
7(a)	(<i>X</i> , <i>Y</i>) values: (2.25, 125), (16, 250),			
	(25, 343), (42.25, 512), (64, 729)	B2,1		PI by c's graph
	Five points accurately plotted	B2,1√`	~	ft wrong values
	Reasonable straight line drawn	BI√	5	ft errors in plotting
(b)	Calculation of gradient of line	M1		
	Value of a equal to gradient found	A1		
	Value of $b = y$ -intercept of line	B1	3	
	Total		8	
8(a)	$f'(x) = 3x^2 - 2$	B1		
	$x_{2} = 1 - \frac{-2}{-1} = 3$	M1A1	3	
	² 1		_	
(b)	Tangent at <i>P</i> drawn	B1		
	x_1 and x_2 shown correctly	B1	2	
		21	_	
(c)	f(2) = 3 > 0, so root < 2	E2,1	2	E1 for incomplete explanation
(b)	$r_{\rm r} = 1.6 - \frac{-0.104}{.000} \approx 1.618$	M1A1	2	
(u)	5.68	1011711	-	
	Total		9	
9(a)	Asymptotes $x = 0, y = 1$	B1, B1	2	
(b)(i)	$\Delta = 4 - 8 < 0$, so num never 0	E2,1	2	OE; E1 for incomplete explanation
		M		
(11)	Method for solving quadratic	MI		"1" must appear
	Roots $-1\pm i$	A2,1	3	A1 if one error made
(c)(i)	$f(\mathbf{r}) = k \rightarrow r^2 + 2r + 2 = kr^2$	M1		
	$ \overrightarrow{(1, k)} x^2 + 2x + 2 = 0 $	m1		
	$\dots \rightarrow (1-k)x + 2x + 2 = 0$	1111	2	
	Equal roots $\Rightarrow 4 - 8(1 - k) = 0$	AI	3	Convincingly shown (AG)
	, 1	D 1		
(11)	$\kappa = \frac{1}{2}$	RI		
	$v = \frac{1}{2}$ at SP	B1√		ft wrong value for k
	2	21,		
	So $\frac{1}{2}x^2 + 2x + 2 = 0$	M1		
	and $x = -2$ at SP	A1	4	
	Total		14	
	TOTAL		75	