AQA

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBS7 Statistics 7

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
isw
bod
wr
fb
deducted x marks for mis-copy deducted x marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae book

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

Mathematics and Statistics B Statistics 7 MBS7 June 2005

MBS7 (cont)

MBS7 (cont)

Q	Solution	Marks	Total	Comments
(a)	Graph shows a linear relationship	B1		Or equivalent
	Conditions suggest only other influence is random variation	B1	2	Or equivalent
(b)	$\hat{\beta}=\frac{-328}{1500}=-\mathbf{0 . 2 1 9} \text { to }-\mathbf{0 . 2 1 8}$	B1		awfw (0.21866)
	$\hat{\alpha}=9.1-\hat{\beta} \times 30=15.6$ to 15.7	$\begin{gathered} \text { (B1) } \\ \text { B1 } \end{gathered}$	2	If both scored in (d) awfw
(c)	$s^{2}=\frac{1}{n-2}\left(S_{y y}-\frac{\left(S_{x y}\right)^{2}}{S_{x x}}\right)$	M1		Use of; or equivalent
	$=0.116$ to 0.117	$\begin{gathered} \text { (B1) } \\ \text { A1 } \end{gathered}$	2	If scored in (d) awfw (0.11676)
(d)	$\mathrm{H}_{0}: \beta=-0.2$	B1		Both; must be population
	$\mathrm{H}_{1}: \beta \neq-0.2$			
	$\begin{array}{ll} \mathrm{SL} & \alpha=0.05(5 \%) \\ \mathrm{DF} & v=9-2=7 \end{array}$	B1		cao
	CV $\|t\|=\mathbf{2 . 3 6}$ to 2.37	B1		awfw; ignore sign (2.2365)
	$t=\frac{\hat{\beta}-\beta_{0}}{\sqrt{s^{2} / S_{x x}}}=\frac{(-0.21866)-(-0.2)}{\sqrt{0.11676 / 1500}}$	M1		Use of; allow $\beta_{0}=0$
	$=-2.17$ to -2.03	A1		awfw; ignore sign (-2.116)
	Thus, at 5% level, accept H_{0}, so no evidence to reject null hypothesis that $\beta=-0.2$	A1 \checkmark	6	ft on t-value and CV but signs must be consistent
(e)	For each $\mathbf{1}$ or 10 mg increase/rise/change in additive there is	B1		Or equivalent
	an average decrease/fail/change in drying time of 0.2 or 2 hours	B1	2	Or equivalent
	Total		14	

MBS7 (cont)

Q	Solution	Marks	Total	Comments
4	H_{0} : average per hour is constant $\mathrm{H}_{1}: \operatorname{not} \mathrm{H}_{0}$	B1		Allow rectangular or uniform At least H_{0}
	$\begin{array}{ll} \mathrm{SL} & \alpha=0.10(10 \%) \\ \mathrm{DF} & v=\mathbf{4} \end{array}$	B1		cao
	$\begin{array}{lll} & \mathrm{CV} & \chi^{2}=\mathbf{7 . 7 7} \text { to } \mathbf{7 . 7 8} \\ \text { or } & \mathrm{CV} & \chi^{2}=\mathbf{6 . 2 5} \end{array}$	B1		awfw awrt
	Estimate of average/hour $=\frac{480}{32}=\mathbf{1 5}$	B1		cao; may be implied by E
	Day O E Mon 136 $\mathbf{1 1 2 5}$	M1		Use of hours
	Tues 43 $\mathbf{5 2 . 5}$			Use of hours
	Wed 89 112.5	(B1)		cao all $5 E=96$
	$\begin{array}{lll}\text { Thur } & 127 & \mathbf{1 3 5 . 0}\end{array}$			
	Fri 85	A1		cao all $5 E$
	$\begin{array}{lll}\text { Week } & 480 & 480.0\end{array}$			
	$\chi^{2}=\sum \frac{(O-E)^{2}}{E}$	M1		Use of; even for all $5 E=96$ but O-values must be customers
	$=16.5$ to 16.6	A1		awfw (16.548) (All $5 E=96$ gives 57.7)
	Thus, at 10% level, reject H_{0}, so evidence that average per hour is not constant	A1 \checkmark	9	ft on χ^{2}-value \& upper tail CV but E-values must be correct or $=96$
		Total	9	

MBS7 (cont)

Q	Solution	Marks	Total	Comments
5	$\underline{C \sim \mathrm{~N}\left(1085,18^{2}\right) \quad B \sim \mathrm{~N}\left(420,6^{2}\right)}$			
(i)	$W=B+\Sigma C$			
	Mean, $\mu_{W}=420+6 \times 1085=6930$	B1		cao; accept 6.93
	Variance, $\sigma_{W}^{2}=6^{2}+6 \times 18^{2}$	M1		Adding (7) variances
	$=1980$	A1	3	cao; accept 0.00198 $(\mathrm{SD}=44.5 \text { or } 0.0445 \Rightarrow \mathrm{~A} 0)$
(ii)	$\mathrm{P}(W<7000)=\mathrm{P}\left(Z<\frac{7000-6930}{\sqrt{1980}}\right)$	M1		Standardising (7000 or 7) using consistent units and $\mathrm{ft}(\mu \& \sigma), \operatorname{not} \sigma^{2}$
	$=\mathrm{P}(\mathrm{Z}<1.57)=0.941$ to 0.943	A1	2	awfw (0.94179)
(b)	$D=C_{1}-C_{2}$			
	Mean, $\mu_{D}=\mathbf{0}$	B1		cao; may be implied in z-value
	Variance, $\sigma_{D}^{2}=18^{2}+18^{2}=\mathbf{6 4 8}$	B1		cao
	SD, $\sigma_{D}=\mathbf{2 5 . 4}$ to 25.5			awfw
	$\mathrm{P}(D>50)=\mathrm{P}\left(Z>\frac{50-0}{\sqrt{648}}\right)$	M1		Standardising (50) using $\mathrm{ft}(\mu \& \sigma)$, not σ^{2} Allow $(0-50)$ or (-50)
	$=\mathrm{P}(Z>1.96)=1-\Phi(1.96)$			
	$=0.024$ to 0.025	A1		awfw
	$\mathrm{P}(\|D\|>50)=2 \times \mathrm{P}(D>50)$	M1		Use of multiplier of 2
	$=0.05$	A1 \checkmark	6	ft on $0<\mathrm{P}(\mathrm{D}>50)<0.5$
		Total	11	

MBS7 (cont)

Q	Solution	Marks	Total	Comments
(a)	$\begin{aligned} & \mathrm{H}_{0}: p=0.4 \\ & \mathrm{H}_{1}: p>0.4 \end{aligned}$	B1		Both; can be scored in (b)
	$\mathrm{P}(X \geq 15 \mid n=30, p=0.4)$	M1		Use of $\mathrm{B}(30,0.4)$
	$=1-\mathrm{P}(X \leq 14$ or 15)	m1		Use of; or $\mathrm{P}(X<\mathrm{CV})>0.9$
	$=1-0.8246=\mathbf{0 . 1 7 5}$ to $\mathbf{0 . 1 7 6}$	A1		awfw; or CV = 16
	Thus, at 10% level, accept H_{0}, so no evidence to support company's claim	A1 \checkmark	5	ft on p-value and $0.10(10 \%)$ or on 15 and CV
(b)	Normal approx with mean, $\boldsymbol{\mu = \mathbf { 6 0 }}$ or $\mathbf{0 . 4}$	B1		Either cao
	and variance, $\sigma^{2}=\mathbf{3 6}$ or $\mathrm{SD}, \sigma=\mathbf{6}$ or variance, $\sigma^{2}=\mathbf{0 . 0 0 1 6}$ or $\mathrm{SD}, \sigma=\mathbf{0 . 0 4}$	B1		One cao
	CV $\quad z=1.28$	B1		awrt (1.2816)
	$z=\frac{x-\mu}{\sqrt{\sigma^{2}}}=\frac{(72.5 \text { or } 73 \text { or } 73.5)-60}{\sqrt{36}}$	M1		Standardising (72, 72.5, 73, or 73.5) using $\mathrm{ft}(\mu \& \sigma)$, not σ^{2} Or equivalents for \hat{p}
	$\begin{aligned} & =\mathbf{2 . 0 8} \text { to } 2.17 \\ \Rightarrow \quad & p \text {-value }=\mathbf{0 . 0 1 5} \text { to } 0.019 \end{aligned}$	$\begin{gathered} \text { A1 } \\ \text { (A1) } \end{gathered}$		awfw Excludes use of 72 or 73.5
	Thus, at 10% level, reject H_{0}, so evidence to support company's claim	A1 \checkmark	6	ft on z-value and CV or on p-value and 10%
	Note $\begin{aligned} & \mathrm{B}(150,0.4) \Rightarrow 0.0193<0.10 \Rightarrow \mathrm{H}_{1} \\ & \mathrm{~B}(150,0.4) \Rightarrow 0.0128<0.10 \Rightarrow \mathrm{H}_{1} \\ & \mathrm{~B}(150,0.4) \Rightarrow 0.98 \text { to } 0.989>0.10 \Rightarrow \mathrm{H}_{0} \end{aligned}$			M2 A3 Al $\sqrt{ }$ M2 A2 A1 $\sqrt{ }$ M1 A2 A0
(c)	Early arrivals unlikely to affect other arrivals or	B1		Very early arrivals may affect other possible early arrivals
	Late arrivals likely to affect other arrivals so Likely to be valid or Unlikely to be valid	B1	2	depending on previous
	Total		13	
	TOTAL		60	

