GCE 2005 January Series

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Mark Scheme

Mathematics and Statistics B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

[^0]Key to Mark Scheme

Abbreviations used in Marking

Abstract

MC - x deducted x marks for mis-copy MR - \boldsymbol{x} deducted x marks for mis-read ISW ignored subsequent working BOD .given benefit of doubt WR work replaced by candidate FB .formulae booklet

Application of Mark Scheme

No method shown:

Correct answer without working mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down award credit for the complete solution only do not mark unless it has not been replaced award method and accuracy marks as appropriate

Mathematics and Statistics B Statistics 7 MBS7 January 2005

Question Number and Part	Solution	Marks	Total	Comments
1	$\begin{gathered} \mathrm{H}_{0}: \mu_{\mathrm{A}}-\mu_{\mathrm{B}}=0.5 \\ \mathrm{H}_{1}: \mu_{\mathrm{A}}-\mu_{\mathrm{B}} \neq 0.5 \\ \mathrm{SL} \quad \alpha=0.05(5 \%) \\ \mathrm{CV} \quad z=1.96 \\ \bar{x}_{\mathrm{A}}=3.44 \quad \bar{x}_{\mathrm{B}}=2.76 \quad \sigma=0.4 \\ z=\frac{\left(\bar{x}_{\mathrm{A}}-\bar{x}_{\mathrm{B}}\right)-\mu_{0}}{\sqrt{\frac{\sigma^{2}}{n_{\mathrm{A}}}+\frac{\sigma^{2}}{n_{\mathrm{B}}}}} \\ =\frac{(3.44-2.76)-0.5}{\sqrt{\frac{0.4^{2}}{20}+\frac{0.4^{2}}{25}}} \\ =1.49 \text { to } 1.51 \end{gathered}$ Thus, no evidence, at 5% level, to reject claim (that $\mu_{\mathrm{A}}-\mu_{\mathrm{B}}=0.5$)	B1 B1 B1 M1 A1 A1 A1 A1 \checkmark	8	allow 0 , rather than 0.5 , in H_{0} must be population means must include 0.5 in $\mathrm{H}_{0} \& \mathrm{H}_{1}$ cao: (allow 1.64 to 1.65 awfw for ' $>$ ' in H_{0}) use of; allow no μ_{0} allow $\mu_{0}=0$ cao awfw $(\mathrm{ca}=1.5)\left(\mathrm{a}=5.67\right.$ with $\left.\mu_{0}=0\right)$ or equivalent ft on z and CV
	Total		8	

MBS7 (cont)

Question Number and Part	Solution	Marks	Total	Comments
2(a)	$\begin{aligned} & \mathrm{H}_{0}: \lambda=8 \text { (or } p=0.008 \text {) } \\ & \mathrm{H}_{1}: \lambda<8 \text { (or } p<0.008 \text {) } \end{aligned}$	B1		both; no mixtures of $\lambda \& p$
	$\mathrm{P}(X \leq 3 \mid \mathrm{Po}(8))$	M1		use of $\operatorname{Po}(8)$
	$\begin{array}{r} =0.042 \text { to } 0.043 \\ (<5 \%) \end{array}$	A1		awfw; $(\mathrm{ca}=0.0424)$
	Thus evidence, at 5% level, that average number (of faulty bottles per batch) has decreased	A1ऽ	4	or equivalent ft on probability versus 5%
(b)(i)	$\bar{x}=\frac{\sum f x}{250}=\frac{500}{250}$	B1	1	cao ratio; (ag of 2)
(ii)	$\begin{aligned} & \mathrm{H}_{0}: X \sim \text { Poisson } \\ & \mathrm{H}_{1}: \text { not } \mathrm{H}_{0} \end{aligned}$	B1		at least H_{0}
	$\begin{array}{llll} & 0 & 41 & 0.1353\end{array}$	M1		attempted Poisson probabilities with $\lambda=2$
	1 57 0.2707 67.675 2 74 0.2707 67.675			
	$\begin{array}{llll}3 & 35 & 0.1804 & 45.100\end{array}$	M1		attempt at $E=250 \times p$
	$\begin{array}{llll}4 & 28 & 0.0902 & 22.550\end{array}$			
	$\begin{array}{llll}5 & 12 & 0.0361 & 9.025)\end{array}$	M1		attempt at ≥ 7 (may be implied)
	6 3 0.0121 $3.025)$ 7 0 0.0045 $1.125)$			
	≥ 7 0 0.0045 $1.125)$ T 200 1.0000 250.000	M1		attempt at combining (13.175)
	$\begin{array}{llrr}\mathrm{T} & 200 & 1.0000 & 250.000\end{array}$			
	$\chi^{2}=\Sigma \frac{(O-E)^{2}}{\Gamma}$	M1		use of
	$=7.50$ to 7.75	A1		awfw
	$\begin{array}{ll} \text { SL } & \alpha=0.01(1 \%) \\ \text { DF } & v=4 \end{array}$	B1		cao
	$\begin{array}{lll} & \mathrm{CV} & \chi^{2}=13.277 \\ \text { or } & \mathrm{CV} & \chi^{2}=15.086 \quad(v=5) \end{array}$			awfw 13.2 to 13.3 awfw 15.0 to 15.1
		B1		
	Thus no evidence, at 1% level, to reject hypothesis that distribution is Poisson	A1 \checkmark	10	or equivalent ft on χ^{2} and CV
	Total		15	

MBS7 (cont)

Question Number and Part	Solution	Marks	Total	Comments
3(a)(b)(i)	$\begin{array}{\|lcc\|} \hline \sum x=140 & \sum x^{2}=3500 & \sum x y=1587 \\ \sum y=63 & \sum y^{2}=722.9 & \bar{x}=20 \quad \bar{y}=9 \\ S_{x x}=700 & S_{y y}=155.9 & S_{x y}=327 \\ \hat{\beta}=0.467 & \hat{\alpha}=-0.343 \end{array}$	B1 B1	2	awrt
	$R S S=155.9-\frac{327^{2}}{700}$	M1		use of; even if called s^{2}
	$s^{2}=\frac{R S S}{5}=\quad 0.628 \text { to } 0.630$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	$\begin{aligned} & \text { use of } R S S \div 5 \\ & \text { awfw } \end{aligned}$
(ii)	$\begin{aligned} & \mathrm{H}_{0}: \beta=0.5 \\ & \mathrm{H}_{1}: \beta \neq 0.5 \\ & \mathrm{SL} \quad \alpha=0.05(5 \%) \end{aligned}$	B1		both
	DF $\quad v=7-2=5$	B1		cao
	$\mathrm{CV} \quad\|t\|=2.571$	B1		awrt 2.57; ignore sign
	$t=\frac{\beta-\beta_{0}}{\sqrt{\frac{s^{2}}{S_{x x}}}}=\frac{0.467-0.5}{\sqrt{\frac{0.629}{700}}}=-1.11 \text { to }-1.09$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		use of awfw; ignore sign
	Thus no evidence, at 5% level, that value of β is not 0.5	A1 \checkmark	6	or equivalent ft on t and CV - consistent signs
(c)(i)	$y=-0.343+0.467 \times 45=20.5$ to 20.9	B1	1	awfw; (allow 22.1 to 22.3 awfw for use with $\beta=0.5$)
(ii)	$x=45 \Rightarrow$ half-way across/middle	E1	1	or equivalent (eg 90/2)
(iii)	Statistical: 45 is outside observed range Practical: Maximum depth unlikely to	B1		or equivalent
	bein middle of river or Riverbed is unlikely to be V-shaped	E1	2	or equivalent or sensible alternative
	Total		15	
4	$T \sim \mathrm{E}(2)$			
(a)		B1	1	cao; accept 'unity'
(b)	$\mathrm{P}(S>5)=\mathrm{P}(T>4)$	B1		4 cao
	$=1-\left(1-\mathrm{e}^{-\frac{4}{2}}\right)=\mathrm{e}^{-2}$	M1		use of exponential cdf or pdf with $\lambda=0.5$ or 2
	$=0.135$	A1	3	awrt
(c)	$\mathrm{P}(S<5 \mid S>3)=\mathrm{P}(T<4 \mid T>2)$	M1		use of conditional probability
	Exponential has 'no memory' so	M1		use of; may be implied
	$=\mathrm{P}(T<2)$	A1		2 cao; (even from 5-3)
	$=1-\mathrm{e}^{-1}=0.632$	A1	4	awrt
(d)	Probability $=(\mathrm{b})^{5}=0.000044$ to 0.000046	B1 $\sqrt{ }$		awfw; ft on (b)
	Implies an extremely rare event so casts doubt on model	E1	2	rare event, or equivalent ag
	Total		10	

MBS7 (cont)

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Set and published by the Assessment and Qualifications Alliance.

 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

