GCE 2005 January Series

Mark Scheme

Mathematics and Statistics B (MBS7)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

M	mark is for		method
m	mark is dependent on one	or more M marks and is for	method
A	mark is dependent on M	or m marks and is for	accuracy
B	mark is independent of M	or m marks and is forme	thod and accuracy
Е	mark is for		explanation
\checkmark or ft or F		follow thro	bugh from previous
			incorrect result
CAO		c	orrect answer only
AWRT		anythir	ng which rounds to
AG		-	answer given
SC			special case
OE			or equivalent
- <i>x</i> EE		deduct x m	arks for each error
NMS			.no method shown
PI			possibly implied
c			candidate
			0

Abbreviations used in Marking

MC – <i>x</i>	deducted x marks for mis-copy
MR – <i>x</i>	
ISW	ignored subsequent working
BOD	
WR	
FB	

Application of Mark Scheme

No method shown: Correct answer without working Incorrect answer without working	
More than one method/choice of solution: 2 or more complete attempts, neither/none crossed out 1 complete and 1 partial attempt, neither crossed out	mark both/all fully and award the mean mark rounded down award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Question Number	Solution	Marks	Total	Comments
and Part				
1	H ₀ : $\mu_{\rm A} - \mu_{\rm B} = 0.5$	B1		allow 0, rather than 0.5, in H_0 must be population means
	H ₁ : $\mu_{\rm A} - \mu_{\rm B} \neq 0.5$	B1		must include 0.5 in $H_0 \& H_1$
	SL $\alpha = 0.05 (5\%)$ CV $z = 1.96$	B1		cao: (allow 1.64 to 1.65 awfw for '>' in H_0)
	$\overline{x}_{A} = 3.44 \qquad \overline{x}_{B} = 2.76 \qquad \sigma = 0.4$ $z = \frac{(\overline{x}_{A} - \overline{x}_{B}) - \mu_{0}}{\sqrt{\frac{\sigma^{2}}{n_{A}} + \frac{\sigma^{2}}{n_{B}}}}$	M1		use of; allow no μ_0
	$=\frac{(3.44-2.76)-0.5}{-0.5}$	A1		allow $\mu_0 = 0$
	$=\frac{(3.44-2.76)-0.5}{\sqrt{\frac{0.4^2}{20}+\frac{0.4^2}{25}}}$	A1		cao
	= 1.49 to 1.51	A1		awfw
	Thus, no evidence, at 5% level, to reject claim (that $\mu_{\rm A} - \mu_{\rm B} = 0.5$)	A1√	8	(ca = 1.5) (a = 5.67 with $\mu_0 = 0$) or equivalent ft on z and CV
	Total		8	

Mathematics and Statistics B Statistics 7 MBS7 January 2005

MBS7	(cont)
MIDS/	

Question	Solution	Marks	Total	Comments
Number and Part				
2(a)	H ₀ : $\lambda = 8$ (or $p = 0.008$)			
	H ₁ : $\lambda < 8$ (or $p < 0.008$)	B1		both; no mixtures of $\lambda \& p$
	$P(X \le 3 Po(8))$	M1		use of Po(8)
	= 0.042 to 0.043 (< 5%)	A1		awfw; $(ca = 0.0424)$
	Thus evidence, at 5% level, that average number (of faulty bottles per batch) has decreased	A1√	4	or equivalent ft on probability versus 5%
(b)(i)	$\overline{x} = \frac{\sum fx}{250} = \frac{500}{250}$	B1	1	cao ratio; (ag of 2)
(ii)	H ₀ : $X \sim$ Poisson H ₁ : not H ₀	B1		at least H ₀
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		attempted Poisson probabilities with $\lambda = 2$
	2 74 0.2707 67.675 3 35 0.1804 45.100 4 28 0.0902 22.550	M1		attempt at $E = 250 \times p$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		attempt at $\geq 7 \pmod{\text{may be implied}}$
	$\frac{\geq 7 0 0.0045 1.125)}{T 200 1.0000 250.000}$	M1		attempt at combining (13.175)
	$\chi^2 = \sum \frac{\left(O - E\right)^2}{E}$	M1		use of
	= 7.50 to 7.75	A1		awfw
	SL $\alpha = 0.01 (1\%)$ DF $\nu = 4$	B1		cao
	or $\begin{array}{ccc} CV & \chi^2 = 13.277 \\ CV & \chi^2 = 15.086 \\ \end{array} (v = 5)$	B1		awfw 13.2 to 13.3 awfw 15.0 to 15.1
	Thus no evidence, at 1% level, to reject hypothesis that distribution is Poisson	A1√	10	or equivalent ft on χ^2 and CV
	Total		15	· · · · · · · · · · · · · · · · · · ·

ABS7 (cont)				
Question	Solution	Marks	Total	Comments
Number				
and Part				
3(a)	$\sum x = 140$ $\sum x^2 = 3500$ $\sum xy = 1587$			
	$\Sigma v = 63$ $\Sigma v^2 = 722.9$ $\overline{x} = 20$ $\overline{v} = 9$			
	$S_{\rm ev} = 700$ $S_{\rm ev} = 155.9$ $S_{\rm ev} = 327$			
	$\sum y = 63 \qquad \sum y^2 = 722.9 \qquad \overline{x} = 20 \qquad \overline{y} = 9$ $S_{xx} = 700 \qquad S_{yy} = 155.9 \qquad S_{xy} = 327$ $\hat{\beta} = 0.467 \qquad \hat{\alpha} = -0.343$	B1 B1	2	awrt
(b)(i)	p = 0.407 $a = -0.545$	DIDI	2	
(0)(1)	$RSS = 155.9 - \frac{327^2}{700}$	M1		use of; even if called s^2
	700			,
	$s^2 = \frac{RSS}{5} = 0.628 \text{ to } 0.630$	M1 A1	3	use of $RSS \div 5$ awfw
		AI	3	awiw
(ii)	° /	B1		hath
	$H_1: \beta \neq 0.5$	DI		both
	SL $\alpha = 0.05(5\%)$ DF $\nu = 7 - 2 = 5$ CV $ t = 2.571$	B1		
	$D\Gamma \qquad V - I - 2 = 3$ $CV \qquad t - 2.571$	B1 B1		cao awrt 2.57; ignore sign
	$c_{V} = l = 2.5/1$	DI		awit 2.37, ignore sign
	$t = \frac{\hat{\beta} - \beta_0}{\sqrt{\frac{s^2}{s}}} = \frac{0.467 - 0.5}{\sqrt{\frac{0.629}{700}}} = -1.11 \text{ to } -1.09$	M1		use of
	$\frac{s^2}{0.629}$	Al		awfw; ignore sign
	$\sqrt{S_{xx}}$ $\sqrt{700}$			
	Thus no evidence, at 5% level, that value			
	of β is not 0.5	A1√	6	or equivalent
				ft on t and CV – consistent signs
(a)(i)		D1	1	
(C)(1)	$y = -0.343 + 0.467 \times 45 = 20.5$ to 20.9	B1	1	awfw; (allow 22.1 to 22.3 awfw for use with $\beta = 0.5$)
(ii)	$x = 45 \implies$ half-way across/middle	E1	1	or equivalent (eg 90/2)
(iii)	$x = 45 \implies$ han-way across/mudic Statistical: 45 is outside observed range	B1	1	or equivalent (eg 30/2)
(111)	<i>Practical</i> : Maximum depth unlikely to	DI		or equivalent
	bein middle of river	E1	2	or equivalent
	or Riverbed is unlikely to be V-shaped			or sensible alternative
	Total		15	
4	$T \sim \mathrm{E}(2)$			
(a)	1	B1	1	cao; accept 'unity'
(b)	P(S > 5) = P(T > 4)	B1		4 cao
	$= 1 - \left(1 - e^{-\frac{4}{2}}\right) = e^{-2}$	2.55		
	$= 1 - (1 - e^{-2}) = e^{-2}$	M1		use of exponential cdf or pdf
	= 0.135	A 1	3	with $\lambda = 0.5$ or 2
(c)	= 0.135 P(S < 5 S > 3) = P(T < 4 T > 2)	A1 M1	3	awrt use of conditional probability
	P(3 < 3 + 3 > 3) - P(1 < 4 + 1 > 2) Exponential has 'no memory' so	M1 M1		use of; may be implied
	= P(T < 2)	A1		2 cao; (even from $5-3$)
	$= 1 - e^{-1} = 0.632$	Al	4	awrt
(d)	Probability = $(b)^5 = 0.000044$ to 0.000046	B1√	-	awfw; ft on (b)
~ /	Implies an extremely rare event	E1	2	rare event, or equivalent
	so casts doubt on model			ag
-	Total		10	

Question Number and Part	Solution	Marks	Total	Comments
5(a)	Mean = 20 + 10 + 75 + 10 = 115	B1		cao
	Variance = $3^2 + 3^2 + 10^2 + 2^2$	M1		adding variances
	= 122	A1		cao; ($\sigma = 11.0$ to 11.1 awfw) (M0 A0 for $\sigma = 18$)
	$P(J < 120) = P\left(Z < \frac{120 - 115}{\sqrt{122}}\right) =$	M1		standardising 120 using ft ($\mu \& \sigma$)
	P(Z < 0.453) = 0.673 to 0.677	A1	5	awrt
(b)(i)	$P\left(R > \frac{2}{3}J\right) = P(3R > 2J)$	M1		use of $\frac{2}{3}$ or 3 & 2
	= P(3R > 2(C + T + R + W))			and sum of 4 parts
	= P(R > 2(C + T + W))	m1	2	cancelling of $2R$
	\Rightarrow answer			ag
(ii)	Mean = 75 - 2(20 + 10 + 10) = -5	B1		cao; ignore sign
	Variance = $10^2 + 2^2(3^2 + 3^2 + 2^2)$	M1		using variances and $(-2)^2$ or +4
	= 188	A1		cao; ($\sigma = 13.7$ awrt)
	$P(X > 0) = P\left(Z > \frac{0 - (-5)}{\sqrt{188}}\right) =$	M1		standardising 0 using ft ($\mu \& \sigma$)
	$P(Z > 0.36466) = 1 - \Phi(0.36466)$			
	= 0.355 to 0.360	A1	5	awfw
	Total		12	
	TOTAL		60	