

Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBS7

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and wales 3644723 MAANegtheelipapers (AQA) is a company limi

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
С		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question Number	Solution	Marks	Total	Comments
and Part				
1	$n = 25$ and $\sum (x - \overline{x})^2 = 4.08$			
(a)	$X \sim \text{normal}$	B1		oe
	CI for σ^2 is: $\frac{\sum (x-\overline{x})^2}{\chi^2(U)}$ to $\frac{\sum (x-\overline{x})^2}{\chi^2(L)}$	M1		use of; oe
	Degrees of freedom, $\nu = 25 - 1 = 24$	B1		cao
	$95\% \Rightarrow 0.025$ and 0.975, so values are: 12.401 and 39.364	B1		both; awrt 12.4 and 39.4
	CI for σ^2 is thus : $\frac{4.08}{39.364}$ to $\frac{4.08}{12.401}$	A1√		ft on χ^2 and equivalent to 4.08
	= (0.104, 0.329)	A1	6	awrt
(b)	$\begin{array}{l} 0.25^2 = 0.0625 < 0.104 \\ 0.25 < \sqrt{0.104} = 0.32 \end{array}$	B1√		ft on CI
	Thus evidence that $\sigma > 5$	B 1√	2	ft on CI
	Total		8	
2	<i>D</i> ~ Exp(125)			
(a)	$\mathbf{P}(D < 100) = \left[-e^{-\frac{d}{125}} \right]_{0}^{100} = 1 - e^{-\frac{100}{125}}$	M1		use of PDF or DF
	$= 1 - e^{-0.8} = 0.550$ to 0.551	A1	2	awfw; accept 0.55
(b)	P(100 < D < 300) = P(D < 300) - (a)	M1		use of; oe
	$(1 - e^{-2.4}) - (1 - e^{-0.8}) = e^{-0.8} - e^{-2.4}$ = 0.909 - 0.551 = 0.449 - 0.091	A1√		correct expression; oe ft on (a)
	= 0.358 to 0.359	A1	3	awfw
	Total		5	

Question	Solution	Marks	Total	Comments
Number and Part				
3(a)	$\hat{\beta} = \frac{-1587.6}{441} = -3.6$	B1		cao
	$s^{2} = \frac{1}{n-2} \left(S_{yy} - \frac{S_{xy}^{2}}{S_{xx}} \right) =$	M1		use of; oe
	$\frac{1}{25} \left(6940.36 - \frac{(-1587.6)^2}{441} \right) = \frac{1225}{25}$ = 49	A1	3	awrt
(b)	H ₀ : $\beta = -3$ H ₁ : $\beta \neq -3$	B1		both
	SL $\alpha = 0.10$ DF $\nu = 27 - 2 = 25$ CV $t = \pm 1.708$	B1 B1		cao awrt 1.71; ignore sign
	$t = \frac{\hat{\beta} - \beta_0}{\sqrt{\frac{s^2}{S_{xx}}}}$	M1		use of; accept no $oldsymbol{eta}_0$
	$t = \frac{-3.6 - (-3)}{\sqrt{\frac{49}{441}}} = -1.80$	A1		awrt; accept –1.8
	Thus evidence, at 10% level, to reject the claim that $\beta = -3$	A1√	6	ft on t and CV, providing consistent signs
	Total		9	

Question	Solution	Marks	Total	Comments
Number				
and Part				
4	H_0 : number is constant	B1		at least H ₀
	H_1 : number is not constant			
	SL $\alpha = 0.10$			
	DF $v = 7 - 1 = 6$	B1		cao
	DF $v = 7 - 1 = 6$ CV $\chi^2 = 10.645$	B1		awfw 10.6 to 10.7
	Mean per hour = $\frac{\sum \text{calls}}{7}$ =			
	Mean per hour = $\frac{-1}{7}$ =	M1		use of
	$\frac{931}{7} = 133$	A1		cao
	1			
	$\chi^2 = \sum \frac{(O-E)^2}{E} =$	M1		use of
	\sim \sim E	1411		
	$\frac{1}{133}\sum(O-133)^2 = 5.73$. 1		
	133 2 (0 100) 0110	A1		awfw 5.72 to 5.74
	Thus insufficient evidence, at 10% level,			
	to suggest that number per hour is not		0	
	constant	A1√	8	ft on χ^2 and upper CV
	Total		8	

Question	Solution	Marks	Total	Comments
Number and Part				
5	$X \sim N(220, 20^2)$ $Y \sim N(175, 40^2)$			
(a)	T = X + Y has: and variance = 2000	B1 B1		cao cao; accept sd = 44.7 awrt
	$P(T < 300) = P\left(Z < \frac{300 - 395}{\sqrt{2000}}\right) =$	M1		standardising 300 using their μ and their σ
	$P(Z < -2.12) = \Phi(-2.12) = 1 - \Phi(2.12)$	m1		attempted area change
	= 0.0165 to 0.0170	A1	5	awfw; accept 0.017
(b)	D = X - Y has: mean $= \pm 45$ variance $= 2000$	M1 A1		use of difference cao; ignore sign both mean and variance cao; accept sd = 44.7 awrt
	P(D > 0) = $P\left(Z > \frac{0-45}{\sqrt{2000}}\right)$ = P(Z > -1.01) = $\Phi(1.01)$	M1		standardising 0 using their μ and their σ
	= 0.841 to 0.844	A1	4	awfw
	Total		9	

Question	Solution	Marks	Total	Comments
Number and Part				
6(a)	n = 40			
	H ₀ : $p = 0.10 (10\%)$ H ₁ : $p > 0.10 (10\%)$	B1		both; can be scored in (b)
	$P(X \ge 7 \mid 40, 0.1)$	M1		attempt at using B(40, 0.1) or Po(4)
	$= 1 - \mathbf{P}(X \le 6)$	A1		$1 - \text{and} \le 6$
	= 1 - 0.9005 = 0.10 (> 0.05)	A1		awrt; accept 10% (≥ 8 (CR) gives 0.0419)
	Thus insufficient evidence, at 5% level, to support buyer's suspicion	A1√	5	ft on <i>p</i> -value and 0.05 (5%) or on 7 and CV (8)
(b)	n = 400			
	Normal approximation with	M1		use of
	mean (μ) = 40 and variance (σ^2) = 36	A1		cao; both
	SL $\alpha = 0.05$ CV $z = 1.6449$	B1		awfw 1.64 to 1.65
	$z = \frac{x - \mu}{\sqrt{\sigma^2}}$	M1		standardising (51.5, 52, 52.5) using their μ and their σ
	$z = \frac{(51.5 \text{ or } 52) - 40}{6} =$			$1.91 \Rightarrow p\text{-value of } 0.028$ $2.00 \Rightarrow p\text{-value of } 0.023$ (binomial $\Rightarrow 0.031$)
	1.91 to 2.00	A1		awfw; accept 2
	Thus sufficient evidence, at 5% level, to support buyer's suspicion	A1√	6	ft on <i>z</i> and CV or on <i>p</i> -value and 0.05 (5%)
	Total		11	

Question Number	Solution	Marks	Total	Comments
and Part				
7	$\begin{array}{cccccc} V & n & \overline{x} & s^2 \\ P & 11 & 201 & 124 \\ Q & 16 & 188 & 134 \end{array}$			allow use of suffices $x/1/P$ and $y/2/Q$ throughout question
(a)	$s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}$	M1		allow misuse of $(s^2)^2$
	Thus $s_p^2 = \frac{10 \times 124 + 15 \times 134}{25}$	A1	2	cao
	$=\frac{3250}{25}$ (= 130)			ag
(b)	H ₀ : $\mu_x = \mu_y$ H ₁ : $\mu_x > \mu_y$	B1 B1		cao; oe cao; oe
	SL $\alpha = 0.01$ <i>DF</i> $\nu = 11 + 16 - 2 = 25$ CV $t = 2.485$	B1 B1		cao awfw 2.48 to 2.49
	$t = \frac{(\overline{x} - \overline{y}) - (\mu_x - \mu_y)}{\sqrt{s_p^2 \left(\frac{1}{n_x} + \frac{1}{n_y}\right)}}$	M1		use of; accept $(\mu_x - \mu_y) = 0$ not z
	Thus $t = \frac{201 - 188}{\sqrt{130\left(\frac{1}{11} + \frac{1}{16}\right)}}$	A1√		substitution; ft on s^2 only
	= 2.91	A1		awrt
	Thus evidence, at 1% level, that pears of Variety P weigh, on average, more than pears of Variety Q (grower's suspicion)	A1√	8	ft on t/z and CV
	Total		10	
	TOTAL		60	