version: 1.0 9/9/2005

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBS5 Statistics 5

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

- X f	1 ' C	.1 1
M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
\mathbf{E}	mark is for	explanation
√or ft or F		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
–x ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC-x	deducted x marks for mis-copy
MR-x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme


No method shown:

mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

Mathematics and Statistics B Statistics 5 MBS5 June 2005

Q	Solution	Marks	Total	Comments
1(a)	See graph on next page	M1 B1 A1	3	Scales and labels Reasonably accurate plot – allow one small slip
(b)	y = -7.90 + 1.04x	B2 B1		1.04 (1.035 to 1.045) allow M1A1 if method shown - 7.90(- 7.89 to - 7.91)
	x = 10 $y = 2.5$ $x = 160$ $y = 158.3$ + line	M1 A1	5	Method for their line Accurate line - by eye
(c)	B $4-(-7.90)-1.04\times12=-0.56$ G $88-(-7.90)-1.04\times86=6.55$	M1 m1		Method for residuals - ignore sign Method for residuals - consistent signs must be demonstrated - eg. disallow if one
		A1	3	residual is zero -0.56(-0.55 to -0.6) and 6.55(6.45 to 6.6)
(d)	B has a small residual but 4 is a poor estimate of 12	E1		Small residual not necessarily good
	G has relatively large residual but 88 is a good estimate of 86	E1		Illustrated by B or G
	Small residual indicates consistent with pattern of other estimates - not necessarily good or bad.	E1	3	Small residual ⇒ consistent with pattern or other relevant comment
(e)	Actual age is reduced by 7. Equation becomes $y = -0.90 + 1.04x$ - which is	E1		Estimates improved - disallow if no or clearly incorrect reason
	very close to ideal $y = x$. Eamon's estimates better than appeared in part (b)	E1	2	Corrected equation or ideal is $y = x$ or other sensible comment
	Total		16	

Graph for question 1

Q	Solution	Marks	Total	Comments
2(a)	$z = \frac{20 - 26}{8} = -0.75$	M1		Method for <i>z</i> - ignore sign
	Probability no need to refill $1 - 0.77337 = 0.227$	M1 A1		Completely correct method 0.227 (0.226 to 0.227)
	$z = \frac{40 - 26}{8} = 1.75$ Probability exactly one refill i.e between 20 and 40 = 0.95994 - 0.2263 = 0.733	M1 A1	5	Correct method 0.733 (0.733 to 0.734)
(b)(i)	$0.22623^5 = 0.000598$	M1 A1	2	0.000598 (0.00059 to 0.00061)
(ii)	$z = \frac{20 - 26}{\frac{8}{\sqrt{5}}} = -1.677$	M1		Use of $\frac{8}{\sqrt{5}}$
	probability mean less than $20 = 1 - 0.9532 = 0.0468$	m1 A1	3	Completely correct method 0.0468(0.046 to 0.048)
(c)	$\mu - 0.9945\sigma = 20 \mu - 1.175\sigma = 40$	B1 B1 M1		0.9945 (0.994 to 0.995) 1.175 (1.17 to 1.18) Good attempt at equations - ignore sign
	$2.169\sigma = 20$ $\sigma = 9.222$	m1 m1 A1	6	Completely correct equations Method of solution $\sigma = 9.222 \ (9.21 \ \text{to} \ 9.23)$ and $\mu = 29.2 \ (29.1 \ \text{to} \ 29.3)$
	$\mu = 29.2$ Total		16	25.2 (25.11 to 25.3)

Q	Solution	Marks	Total	Comments
3(a)(i)	$197 \pm 1.96 \times \frac{103}{\sqrt{90}}$	M1		Use of $\frac{103}{\sqrt{90}}$
	$\sqrt{90}$			
		B1		1.96
	197 ± 21.3	m1	4	Completely correct method - their z
	176~218	A1	4	$197 \pm 21.3(21.25 \text{ to } 21.35) \text{ or}$
				176(175.5 to 176) and 218 (218 to 218.5)
(ii)	42.6	B1	1	42.6(42.5 to 42.6)
(iii)	2 103	M1		Reasonable attempt at equation containing
	$2z \times \frac{103}{\sqrt{90}} = 30$			z - ignore omission of 2
	V	m1		Completely correct equation containing z
	z = 1.382	m1		Method for finding <i>z</i>
		1111		Tremou for imanig 2
	1-0.9614			
	-1.382 1.382			
	1 - 2(1 - 0.9164) = 0.833	M1		Method for probability - their <i>z</i>
	83.3%	A1	5	83.3 (83 to 83.5)
	103	B1		2.5758 (2.57 to 2.58)
(iv)	$2 \times 2.5758 \times \frac{103}{\sqrt{n}} = 30$	M1		Reasonable attempt at equation involving
	n = 312.8			n - ignore omission of 2, incorrect z
	n - 312.8	m1		Method of solution of equation
	313 needed	A1	4	313 cao
(b)(i)	large sample \Rightarrow sample mean normally	E1		Large sample / CLT
	distributed	E1	2	Mean normally distributed
(ii)	Mean less than 2 s.d. above zero \Rightarrow non-	E1	2	Mean less that 2 s.d. above zero /
	trivial probability of negative values	E1	2	possibility of negative values / money discrete variable
	which are not possible Total		18	discrete variable
	10tai		10	

Q	Solution	Marks	Total	Comments
4(a)	0.3	B1	1	0.3 cao
(b)(i)	$\frac{10}{30} = \frac{1}{3}$	B1	1	$\frac{1}{3}$ acf
(ii)	$\frac{1}{3} \times 0.06 = 0.02$	M1	1	Method - their (b)(i)
(iii)	$\frac{15}{30}(0.30 + 0.15) = 0.225$	M1 A1	2	Method - generous 0.225
(iv)	$\frac{1}{3} \times 0.06 + \frac{1}{2} \times 0.15 + \frac{5}{30} \times 0.18 = 0.125$	M1 m1 A1	3	Attempt at P(4* comedy) + P(4* drama) + P(4* other) Completely correct method 0.125 cao
(v)	$\frac{3}{4} \times (0.20 + 0.35) + \frac{1}{4} (0.40 + 0.10) = 0.5375$	M1 m1 A1	3	Reasonable attempt Completely correct method 0.5375 (0.537 to 0.538)
(c)	$3 \times \frac{10}{30} \times \frac{9}{29} \times \frac{15}{28} = 0.166$	B1 M1	3	3 Allow omission of or incorrect '3' - allow with replacement 0.166 (0.166 to 0.1665)
	Total		14	

Q	Solution	Marks	Total	Comments
5(a)(i)	$H_0: \mu = 40$	B1		One correct hypothesis – generous
	$H_1: \mu \neq 40$ (allow $\mu > 40$ and 1.6449)	B1		Both hypotheses correct – ungenerous
				Allow $H_1 \mu > 40$
	$z = \frac{46.5 - 40}{12} = 1.53$	N/1		Use of $\frac{12}{\sqrt{8}}$
	$\frac{12}{\sqrt{9}}$	M1		Use or $\frac{1}{\sqrt{8}}$
	√8	m1		Completely correct method for z ignore
				sign
	c.v ± 1.96 ; 1.53 lies between	A1		1.53 (1.525 to 1.535)
	± 1.96 so accept H ₀ , mean is 40 mins	B1		1.96 - ignore sign
				(cv 1.895 for one tail test)
		A1√		Correct conclusion – must be compared
				with z
				N.B. apply this mark scheme to (a)(ii)
				and vice versa if more favourable to
				candidate
(ii)	$H_0: \mu = 50$	B1		Both hypotheses correct – ungenerous
	$H_1: \mu \neq 50$ (allow $\mu < 50$ and -1.6449)			
	46.5 – 50	A1		$-0.825 \ (-0.8245 \ \text{to} -0.8255)$
	$z = \frac{46.5 - 50}{12} = -0.825$	AI		- 0.823 (- 0.8243 to - 0.8233)
	$\frac{12}{\sqrt{8}}$			
	c.v ± 1.96 ; -0.825 lies between			
	± 1.96 so accept H ₀ , mean is 50 mins	A 1 A	1.0	Correct conclusion must be compared
	±1.90 so accept Π_0 , mean is 30 mms	A1√	10	Correct conclusion must be compared with both tails or lower tail of t
(b)	Claim 1. C Not true - no null hypothesis	E2,1		Correct conclusion for correct reason - be
(6)	rejected so no Type 1 error made	12,1		generous for E1 but disallow no or clearly
	rejected so no Type I enoi made			incorrect reason
	Claim 2. B Possibly true - true if	E2,1		Correct conclusion for correct reason - be
	population mean is equal to neither 40 nor			generous for E1 but disallow no or clearly
	50			incorrect reason
		 .	-	
	Claim 3. A Definitely true - since mean	E2,1	6	Correct conclusion for correct reason - be
	cannot equal both 40 and 50			generous for E1 but disallow no or clearly
				incorrect reason
	Total		16	
	TOTAL		80	
	IUIAL		ou	