

GEE

Mathematics \& Statistics B

Unit MBS3

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]| Question Number and Part | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1(a) | H_{0} Population median purchases $=11$
 H_{1} Population median purchases > 11
 1 tail test 10% level signs
 $--+-+++++-++++-+-+--$
 test stat $=8-/ 12+$
 Bin (20, 0.5) model $\mathrm{P}(\leq 8-)=0.2517>0.10$
 Accept H_{0}. No significant evidence to suggest median has increased
 Distribution of purchases is skew or Wilcoxon requires symmetric distribution | B1
 M1
 A1
 M1
 M1
 A1
 B1 | 6 1 | For signs
 For test stat (6 and 12 M1A0)
 For use of Bin model
 For comparison ts and 10\% |
| | Total | | 7 | |
| 2(a)(i) | $\begin{aligned} 0.4 \times 50+0.1 \times 30 & =23 \\ \text { prob } & =\frac{23}{80} \text { or } 0.287(5) \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 3 | M1 for 0.4×50 etc
 M1 for total 23
 A1 correct (accept \%) |
| (ii) | $\frac{20}{23} \text { or } 0.870$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ | 2 | M1 for denominator A1 correct |
| (b)(i) | $0.10+0.20-0.25=0.05\left(\frac{1}{20}\right)$ | M1A1 | 2 | |
| (ii) | $\frac{0.05}{0.20}=\frac{5}{20}=\frac{1}{4}=0.25$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ | 2 | for denominator |
| | Total | | 9 | |

Question Number and Part	Solution	Marks	Total	Comments
3(a)	```\(\mathrm{H}_{0}\) Samples of MTBE levels are from identical popluations \(\mathrm{H}_{1}\) Populations are not identical - MTBE levels are higher during weekends 1tail \(5 \%\) level ranks weekend \(19,8,16,7,11,5,15,18,14,17\) midweek- \(10,2,12,3,1,9,13,6,4\) \(T_{\text {weekend }}=130\) \(T_{\text {midweek }}=60\) test stat \(U=60-\left(\frac{9 \times 10}{2}\right)=15\) lower tail \(\mathrm{cv}=24\) \(U<24\) Reject \(\mathrm{H}_{0}\)``` There is significant evidence to reject H_{0} and conclude that levels of MTBE are higher at weekends than midweek. A Type II error would be to conclude that there was no increase in MTBE levels at the weekend when, in fact, there was an	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { m1A1 } \\ \text { M1A1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1A1 } \\ \text { E1 } \checkmark \\ \text { B1 } \\ \text { B1 } \end{gathered}$	13 2	H_{0} pop median weekend = pop median midweek H_{1} pop median weekend < pop median midweek N.B. Many other acceptable methods For ranks together A1 for 15 correct For totals (either) For test stat either correct (upper tail $\left.U=130-\left(\frac{10 \times 11}{2}\right)=75\right)$ For cv/consistent with tail used for U For comparison ts/cv ft if cv B0B1 Concept of Type II In context
	Total		15	

Question Number and Part	Solution	Marks	Total	Comments
4(a)	(See scatter diagram on next page)	$\begin{gathered} \text { B1 } \\ \text { M1 A1 } \end{gathered}$	3	Axes/scales
(b)	$\begin{aligned} & \text { ranks } \\ & \begin{array}{l} x 2,6,11,9,10,1,8,4,5,7,3 \\ y 2,7,10,9,11,1,6,4,5,8,3 \end{array} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		For ranks
	$r_{\text {s }}($ from calculator $)=0.964$	B3	6	Alternatively: Differences, d $\begin{aligned} & 0,1,1,0,1,0,2,0,0,1,0 \\ & \sum d^{2}=8 \mathrm{~B} 1 \\ & r_{\mathrm{s}}=1-\frac{6 \times 8}{11 \times 120}=0.964 \end{aligned}$
(c)	$\begin{aligned} & \mathrm{H}_{0} \rho_{s}=0 \\ & \mathrm{H}_{1} \rho_{s}>0 \quad 1 \text { tail } \quad 1 \% \\ & \text { test stat } \mathrm{r}_{\mathrm{s}}=0.964 \\ & \text { critical value }=0.700 \\ & \text { tests stat }>0.700 \text { so significant evidence } \\ & \text { exists to reject } \mathrm{H}_{0} \text { and conclude that a } \\ & \text { direct association exists } \end{aligned}$	B1 B1 M1		M1, A1
	This suggests that floods, in which there is a higher death toll, also result in a greater cost in property damage.	A1	4	Must be in context
(d)	There is clear evidence of a non linear relationship.	B1	1	
	Total		14	

Graph for Q 4(a)

Question Number and Part	Solution	Marks	Total	Comments
5(a)	H_{0} Population average scores same for both tests H_{1} Population average scores differ $2 \text { tail test } \quad 5 \% \text { level }$ differences	B1		$\begin{array}{r} \text { Or } \mathrm{H}_{0} \eta_{\text {diff }}=0 \\ \mathrm{H}_{1} \eta_{\text {diff }} \neq 0 \end{array}$
		M1 m1m1 A1 m1 A1 B1 M1		For differences For ranks (1 = lowest) and ties For totals $\quad T=34 \mathrm{M} 0$ etc correct test stat for cv for comparison ts/cv
	There is no significant evidence of a difference in average scores for the two tests	A1	10	
(b)	$\begin{aligned} & \text { PMCC } r=0.891 \text { (} 3 \mathrm{sf} \text {) } \\ & \\ & \text { (from calculator) } \\ & \text { sc } \quad r=0.89 \text { or } 0.890 \quad \text { M2A0 } \end{aligned}$	B3	3	$\text { or } \begin{aligned} r & =\frac{53856-\frac{783 \times 788}{12}}{49.115 \times 55.737} \\ & =0.891(3 \mathrm{sf}) \quad \text { M1, M1, A1 } \end{aligned}$
(c)	There is no significant difference in average scores and there is high direct correlation which implies the two tests are consistent and equally effective.	B1 E1	2	for linking similar averages/high PMCC no ft for interpretation
	Total		15	
	TOTAL		60	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

