GCE 2004 November Series

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Mark Scheme

Mathematics and Statistics B MBS1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
$-x$ ee		deduct x marks for each error
PI		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC $-\boldsymbol{x}$	deducted x marks for mis-copy
MR $-\boldsymbol{x}$	deducted x marks for mis-read
isw	ignored subsequent working
bod	gave benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

Correct answer without working Incorrect answer without working

mark as in scheme zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Mathematics and Statistics B Statistics 1 MBS1 November 2004

Question Number and Part	Solution	Marks	Total	Comments
1(a)(i) (ii) (b)	$\begin{aligned} & 0.2600 \\ & P(14)=0.5704-0.4644=0.106 \\ & 1-0.8272=0.173 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$		```0.2600 (0.2595 to 0.2605) \(\mathrm{P}(14)=\mathrm{P}(14\) or fewer \()-\mathrm{P}(13\) or fewer \()\) or correct use of formula 0.106 (0.1055 to 0.1065) 1 - P(17 or fewer) 0.173 (0.172 to 0.173)```
	Total		5	
2	1. probably incorrect (B) - would expect negative correlation coefficient 2. Definitely incorrect (C) $-r$ cannot exceed 1 3. Plausible (A) - probably both related to population of town	$\begin{aligned} & \hline \text { B1 } \\ & \text { E1 } \\ & \text { B1 } \\ & \text { E1 } \\ & \text { B1 } \\ & \text { E1 } \end{aligned}$	6	Probably incorrect Negative expected Definitely incorrect Cannot exceed 1 Plausible Related to population of town
	Total		6	
3(a)	Number students 000 to 409	E1		Valid numbering
	Select 3 digit random numbers	E1		Select 3-digit random numbers
	Ignore repeats	E1		Ignore repeats
	Ignore > 409	E1		Ignore >409 consistent with their numbering
	Continue until 20 obtained and choose corresponding students	E1	5	20 obtained/select corresponding students
(b)(i)	Incomes in 2003 of the 410 students	B1		Incomes
		B1	2	410 students
(ii)	Mean income of the sample of 20 students	B1		Mean/s.d/...
		B1	2	Sample
(c)	Incomes of all mathematics graduates	B1	1	Valid population; must mention incomes
	Total		10	
4(a)(i)	$0.8 \times 0.7=0.56$	B1		0.56 cao
(ii)	$0.2 \times 0.3=0.06$	M1		Method
		A1		0.06 cao
(iii)	$0.8 \times 0.3+0.2 \times 0.7=0.38$	M1		Method - allow small slip
	(or $1-0.56-0.06=0.38)$	A1	5	0.38 cao
(b)(i)	$0.8 \times 0.7 \times 0.95=0.532$	B1		0.532 cao
(ii)	$0.8 \times 0.3 \times 0.95+0.2 \times 0.7 \times 0.15 \ldots$	M1		Attempt at $\mathrm{P}(2)+\mathrm{P}(3)$ or equivalent
	$\ldots+0.8 \times 0.7 \times 0.05+0.532=0.809$	M1		Reasonable attempt at evaluating $\mathrm{P}(2)$ (or $\mathrm{P}(1)$ if relevant)
		$\begin{gathered} \text { m1 } \\ \text { A1 } \end{gathered}$	5	Completely correct method $0.809 \text { cao }$
	Total		10	

MBS1 (cont)

Question Number and Part	Solution	Marks	Total	Comments
5(a)	Question 1: suitable Question 2: not suitable; classes not mutually exclusive Question 3: not suitable; time is continuous	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { B1 } \\ & \text { M1 } \\ & \text { m1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	5	Suitable Not suitable Not mutually exclusive Not suitable Time continuous variable (Maximum B1 M1 if no valid reasons) Choose question 3 Method for frequency density Method for histogram Scales, labels, no gaps Reasonably accurate plot, by eye (No marks if questions 1 or 2 chosen)
	Total		10	
6(a)(i)	$\left.\begin{array}{l} \text { Binomial } n=6 \quad p=0.5 \\ \mathrm{P}(\text { more than } 4)=1-0.8906 \\ \\ =0.109 \end{array}\right\} \begin{aligned} & \mathrm{P}(6)=1.0000-0.9844=0.0156 \end{aligned}$ 14 out of $900=0.0156$ It appears the proportion of unit trusts outperforming the stock market average over a six-year period is consistent with a random selection of investments	B1 M1 A1 M1 A1 M1 E1 \checkmark E1	3 2	B(6, 0.5) $\mathrm{P}($ more than 4$)=1-\mathrm{P}(4$ or fewer $)$ $0.109(0.109 \text { to } 0.11)$ $\mathrm{P}(6)=1-\mathrm{P}(5$ or fewer $)$ or $\mathrm{P}(6$ or fewer $)-\mathrm{P}(5$ or fewer) or correct use of formula $0.0156 \text { (} 0.015 \text { to } 0.016 \text {) }$ Appropriate calculation attempted Conclusion consistent with their earlier results Appropriate conclusion based on correct calculations
	Total		8	

MBS1 (cont)

Question Number and Part	Solution	Marks	Total	Comments
7(a)(i)	$z=\frac{75-85}{8}=-1.25$	M1		Method for z; ignore sign
	$\begin{gathered} \mathrm{P}(<75)=1-0.89435 \\ =0.106 \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	A correct use of normal tables 0.106 (0.105 to 0.106)
(ii)	$z_{2}=\frac{81-85}{8}=-0.5$	M1		Completely correct method; allow both z 's positive
	Probability between 75 and 85 is $0.89435-0.69146=0.203$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	Reasonable attempt, both z 's negative 0.203 (0.202 to 0.204)
(b)	$85+3.0902 \times 8=110$	B1 M1 m1 A1	4	$\begin{aligned} & 3.09 \text { or } 3.0902 \\ & \text { (their } z) \times 8 \\ & \text { Completely correct method } \\ & 110(109 \text { to } 110) \end{aligned}$
(c)(i)	$z=\frac{81-85}{\frac{8}{\sqrt{4}}}=-1$	M1		Use of $\frac{8}{\sqrt{4}}$
	Probability mean less than 81 $=1-0.84134=0.159$	m1		Completely correct method
		A1	4	0.159 (0.158 to 0.16)
(ii)	$1-0.69146=0.309$	M1 A1	2	Attempt to calculate probability flight time less than 81 minutes 0.309 (0.308 to 0.31)
	Total		16	
8(a)(b)	(see graph on next page)	M1		Method for scatter diagram
		A1	2	Reasonably accurate plot by eye, allow one small slip, disallow for joined up points
	$y=-81.4+5.50 x$	B2		-81.4 (-81.35 to -81.45), allow M1A1
		B2		5.50 (5.49 to 5.51), allow M1A1
	$x=20 \quad y=28.6 \quad x=60 \quad y=248.7$	M1		Method for line
		A1	6	Accurate line
(c)(i)(ii)	$\begin{aligned} 147-(-81.4)-5.50 \times 45 & =-19.2 \\ 298-(-81.4)-5.50 \times 65 & =21.8 \end{aligned}$	M1		Method - ignore sign, allow read from graph
		m1		Consistent signs or both correct ignoring signs
		A1	3	-19.2 (-19 to -19.4) and 21.8 (21.6 to 22)
(d)(i)	260	B1	1	260 (259 to 260)
(ii)	Both graph and residuals suggests that in this region the actual time will exceed time predicted by regression equation	E1	1	Reason
(e)	Appropriate regression equation would be $x=a+b y$ since number of step-ups now depends on time	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	2	$x=a+b y$ Reason
	Total		15	
	TOTAL		80	

MBS1 (cont)

Graph for Question 8 (a) and (b)

