GCE 2004 June Series

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Mark Scheme

Mathematics and Statistics B MBP6

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
B	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
$-x$ ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
isw
bod
wr
fb

deducted x marks for mis-copy deducted x marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae book

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
mark as in scheme zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

Mathematics and Statistics B Pure 6 MBP6 June 2004

Question Number and Part	Solution	Marks	Total	Comments
1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \operatorname{sech}^{2} x-4 \operatorname{sech} x \tanh x$ Setting their $y^{\prime}=0$ Sorting out denominator Correctly showing $\sinh x=\frac{3}{4}$	$\begin{gathered} \text { B1 B1 } \\ \text { M1 } \\ \text { m1 } \\ \text { A1 } \end{gathered}$	5	Or attempt at verification Give (as a B1) for $\cosh x=\frac{5}{4}$ Or $y^{\prime}=0$ legitimately. ag
	Total		5	
2 (a)	$r=256$ and $\theta=0.8600$	B1 B1	2	r exact; θ to any accuracy
(b)	$\begin{aligned} & \left\|z_{1}\right\|=2 \\ & \arg \left(z_{1}\right)=0.1075 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \checkmark \\ & \mathrm{~B} 1 \checkmark \end{aligned}$	2	$\begin{aligned} & \mathrm{ft} \text { their } \sqrt[8]{r} \\ & \mathrm{ft} \text { their } \theta \div 8 \end{aligned}$
(c)	z_{1} plotted on an Argand diagram	B1		Must be approx. correct in 1st quad.
	and radius 2 and equally spaced (at angles of $\frac{\pi}{4}$) around it	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	Correct distances statement Correct angles statement
	Total		7	
3 (a)	Aux. eqn. $m^{2}+2 m+1=0 \Rightarrow m=-1$ (twice)	M1 A1		
	CF is $y=(A x+B) \mathrm{e}^{-x}$ For P.I., try $y=a \mathrm{e}^{3 x}$ Subst ${ }^{2}$. their $y, y^{\prime}, y^{\prime \prime}$ into diff. eqn.	$\begin{gathered} \mathrm{B} 1 \checkmark \\ \mathrm{M} 1 \\ \mathrm{~m} 1 \end{gathered}$		ft
	PI is $y=\frac{1}{2} \mathrm{e}^{3 x}$	A1		i.e. $a=\frac{1}{2}$
	GS is their CF (with 2 arb. Consts.) + their PI (with none): $y=(A x+B) \mathrm{e}^{-x}+\frac{1}{2} \mathrm{e}^{3 x}$	$\mathrm{B} 1 \checkmark$	7	
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(A-A x-B) \mathrm{e}^{-x}+\frac{3}{2} \mathrm{e}^{3 x}$	$\mathrm{B} 1 \checkmark$		ft valid GS's
	Use of $x=0, y=1, y^{\prime}=2$ to find A, B	M1		Either will do
	$A=1, B=\frac{1}{2} \quad \text { or } y=\left(x+\frac{1}{2}\right) \mathrm{e}^{-x}+\frac{1}{2} \mathrm{e}^{3 x}$	A1	3	
	Total		10	
4 (a)	$(\sin x+\sin 4 x)+(\sin 2 x+\sin 3 x)$	M1		Or other pairing $\text { e.g. }(\sin x+\sin 2 x)+(\sin 3 x+\sin 4 x)$
	$=2 \sin \frac{5}{2} x \cos \frac{3}{2} x+2 \sin \frac{5}{2} x \cos \frac{1}{2} x$	A1 A1		$=2 \sin \frac{3}{2} x \cos \frac{1}{2} x+2 \sin \frac{7}{2} x \cos \frac{1}{2} x$
	Factorisation and repeated use of sum-and-product formulae: $2 \sin \frac{5}{2} x\left(\cos \frac{3}{2} x+\cos \frac{1}{2} x\right)$	M1		$=2\left(\sin \frac{3}{2} x+2 \sin \frac{7}{2} x\right) \cos \frac{1}{2} x$
	$=4 \cos \frac{1}{2} x \cos x \sin \frac{5}{2} x$	A1	5	
(b)	$\cos \frac{1}{2} x=0, \cos x=0, \sin \frac{5}{2} x=0$	M1		At least one of, incl. solving attempt
	$x=\pi \quad x=\frac{1}{2} \pi \quad x=0, \frac{2}{5} \pi, \frac{4}{5} \pi$	$\begin{gathered} \text { A1 A1 } \\ \text { A1 } \end{gathered}$	4	One for each equation's solutions
	Total		9	

MBP6 (cont)

Question Number and Part	Solution	Marks	Total	Comments
5 (a) (b)(i) (ii)	$\begin{aligned} & (c+\mathrm{i})^{1}=\cos .1 \theta+\mathrm{i} \sin .1 \theta \\ & \Rightarrow \text { true for } n=1 \\ & \text { Assuming that }(c+\mathrm{is})^{k}=\cos k \theta+\mathrm{i} \sin k \theta \\ & \begin{array}{l} \Rightarrow(c+\mathrm{is})^{k+1} \end{array} \quad=(\cos k \theta+\mathrm{i} \sin k \theta)(\cos \theta+\mathrm{i} \sin \theta) \\ & \quad=\cos (k+1) \theta+\mathrm{i} \sin (k+1) \theta \\ & (-\sqrt{3}+\mathrm{i})^{n}=2^{n}\left[\cos \left(\frac{5}{6} n \pi\right)+\mathrm{i} \sin \left(\frac{5}{6} n \pi\right)\right] \end{aligned}$ Require $\sin \left(\frac{5}{6} n \pi\right)=0$ and $\cos \left(\frac{5}{6} n \pi\right)>0$ Least $n=12$	B1 B1 M1 A1 B1 M1 A1 M1 A1	2	Or fully explained later At least this far Legitimately shown via $\left(C_{\mathrm{k}} C_{1}-S_{\mathrm{k}} S_{1}\right)+\mathrm{i}\left(S_{\mathrm{k}} C_{1}+C_{\mathrm{k}} S_{1}\right)$ Dealing with the 2 Dealing with the argument; correct
	Total		9	
6 (a)	$\begin{aligned} & \text { Char. Eqn. is } \lambda^{2}-25 \lambda+100=0 \\ & \quad \Rightarrow \lambda=5,20 \\ & \lambda=5 \Rightarrow 3 x+6 y=0 \text { or } y=-\frac{1}{2} x \Rightarrow \\ & \text { evecs. } \alpha\left[\begin{array}{c} 2 \\ -1 \end{array}\right] \\ & \lambda=20 \Rightarrow-12 x+6 y=0 \text { or } y=2 x \Rightarrow \\ & \text { evecs. } \beta\left[\begin{array}{l} 1 \\ 2 \end{array}\right] \end{aligned}$	M1 A1 B1 \checkmark M1 A1 A1	6	ft provided real Either case attempted Any (non-zero) multiple will do
(b) (i)	Invariant lines have gradients $-\frac{1}{2}$ and 2 Product of gradients $=-1$ \Rightarrow lines perpendicular	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Or M1 A1 via scalar prod. $=0$
(ii)	Two-way stretch Parallel to $y=-\frac{1}{2} x$ of s.f. 5 and parallel to $y=2 x$ of s.f. 20	M1 A1 A1	3	Or the composition of 2 stretches
	Total		11	

MBP6 (cont)

MBP6 (cont)

Question Number and Part	Solution	Marks	Total	Comments
8 (a) (i)	$\begin{aligned} & 2 \sinh \theta \cosh \theta \\ & \quad=2 \times \frac{1}{2}\left(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right) \times \frac{1}{2}\left(\mathrm{e}^{\theta}+\mathrm{e}^{-\theta}\right) \\ & \quad=\frac{1}{2}\left(\mathrm{e}^{2 \theta}-\mathrm{e}^{-2 \theta}\right)=\sinh 2 \theta \\ & 2 \sinh ^{2} \theta=2 \times \frac{1}{4}\left(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right)^{2} \\ & \quad=\frac{1}{2}\left(\mathrm{e}^{2 \theta}+\mathrm{e}^{-2 \theta}\right)-1=\cosh 2 \theta-1 \end{aligned}$	M1 A1 M1 A1	4	ag ag
(b) (i)	$\cosh \theta=2 x+1 \Rightarrow \sinh \theta \mathrm{~d} \theta=2 \mathrm{~d} x$ and $\sqrt{4 x^{2}+4 x}=\sinh \theta$ Then $I=\int \sinh \theta \cdot \frac{1}{2} \sinh \theta \mathrm{~d} \theta$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 A1 } \end{gathered}$	4	i.e. $k=\frac{1}{2}$
(ii)	$\begin{aligned} & =\frac{1}{4} \int(\cosh 2 \theta-1) \mathrm{d} \theta \\ & =\frac{1}{4}\left[\frac{1}{2} \sinh 2 \theta-\theta\right] \\ & =\frac{1}{4} \sinh \theta \cosh \theta-\frac{1}{4} \theta+C \\ & =\frac{1}{4} \sqrt{4 x^{2}+4 x} \cdot(2 x+1) \\ & \quad \quad-\frac{1}{4} \cosh ^{-1}(2 x+1)+C \end{aligned}$	M1 A1 M1 A1	4	ag
(c)	$\begin{aligned} L & =\int \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x=\int \sqrt{1+4 x+4 x^{2}} \mathrm{~d} x \\ & =\int(2 x+1) \mathrm{d} x \\ & =\left[x^{2}-x\right]^{89} \\ & =2004 \end{aligned}$	M1 A1 B1 A1 \checkmark A1	5	ft integration (linear only)
	Total		17	
	TOTAL		80	

