

GEE

Mathematics \& Statistics B

Unit MBP6

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and part \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \begin{tabular}{l}
Attempt to integrate \(\frac{1}{x(x-1)}=-\frac{1}{x}+\frac{1}{x-1}\)
\[
\int=-\ln x+\ln (x-1)
\] \\
I．F．is \(\exp \{\) this \(\}=\frac{x-1}{x}\) \\
ALTERNATIVE：
\[
\frac{1}{x(x-1)}=\frac{1}{\left(x-\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}
\] \\
So \(\int=\frac{1}{2 \times \frac{1}{2}} \ln \left|\frac{x-\frac{1}{2}-\frac{1}{2}}{x-\frac{1}{2}+\frac{1}{2}}\right|\) \\
I．F．is \(\exp \{\) this \(\}=\frac{x-1}{x}\)
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
A1 \(\sqrt{ }\) \\
M1A1 \\
（M1） \\
（A1） \\
（A1） \\
（M1） \\
（A1）
\end{tabular} \& 5

5 \& | ft |
| :--- |
| Allow verification：mult ${ }^{\text {² }}$ ．by given I．F． and showing $\text { LHS }=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y(x-1)}{x}\right)$ |
| From Formula Book |

\hline \& Total \& \& 5 \&

\hline | 2(a) |
| :--- |
| （b） | \& \[

$$
\begin{aligned}
& 2 \sin 4 x \cos 3 x=\sin 7 x+\sin x \\
& \text { Use of } \int(\sin 7 x+\sin x) \mathrm{d} x \\
& \qquad \begin{aligned}
I & =\frac{1}{2}\left[-\frac{1}{7} \cos 7 x-\cos x\right] \\
& =\frac{1}{2}\left[-\frac{1}{7} \cdot \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}+\frac{1}{7}+1\right] \\
& =\frac{2}{7}[2-\sqrt{2}]
\end{aligned}
\end{aligned}
$$

\] \& | M1A1 |
| :--- |
| M1 」 |
| A1A1 |
| M1 |
| A1 | \& 2

5 \& | ft （a）＋integration attempt |
| :--- |
| Ignore the factor $\frac{1}{2}$ until end |
| A1 A0 if both positive |
| Substitution of limits with exact values attempted； |
| cao，any exact equivalent form |

\hline \& Total \& \& 7 \&

\hline | $3(\mathrm{a})$ |
| :--- |
| （b） |
| （c） | \& | Attempt to solve aux．eqn．$m^{2}-5 m=0$ $\Rightarrow m=0,5$ |
| :--- |
| GS is $y=A+B \mathrm{e}^{5 x}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 a x+b \quad \text { and } \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 a$ |
| Substituting these into $y^{\prime \prime}-5 y^{\prime}=20 x$ |
| Solving $-10 a=20$ and $2 a-5 b=0$ $a=-2, b=-\frac{4}{5}$ |
| GS is $y=A+B \mathrm{e}^{5 x}-2 x^{2}-\frac{4}{5} x$ | \& | M1 |
| :--- |
| A1 |
| B1」 |
| B1 |
| M1 |
| M1」 |
| A1 |
| B1」 | \& 3

4 \& | ft $2 a-5(2 a x+b)=20 x$ |
| :--- |
| ft sim．eqns．from equating terms |
| ft （a）and（b） |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

Question Number and part	Solution	Marks	Total	Comments
4(a) (b)	$\begin{aligned} & y=\sinh ^{2} x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \sinh x \cosh x \\ & =\sinh 2 x \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 \cosh 2 x \\ & 1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\sinh ^{2} 2 x=\cosh ^{2} 2 x \\ & \text { Use of } \kappa=\frac{y^{\prime \prime}}{\left(1+\left(y^{\prime}\right)^{2}\right)^{\frac{3}{2}}}=\frac{2 \cosh 2 x}{\cosh ^{3} 2 x} \\ & =\frac{2}{\cosh ^{2} 2 x} \\ & \quad=\frac{2}{\frac{1}{2}+\frac{1}{2} \cosh 4 x}=\frac{4}{1+\cosh 4 x} \end{aligned}$	B1 B1 M1A1 M1 A1 M1A1	7	oe Or $\rho=\frac{1}{\kappa}$ ag
	Total		8	
5(a) (b)(i) (ii)	Char. Eqn. is $\lambda^{2}-7 \lambda-8=0$ $\Rightarrow \lambda=-1,8$ $\lambda=-1 \Rightarrow 2 x+y=0$ or $y=-2 x \Rightarrow$ evecs. $\alpha\left[\begin{array}{c}1 \\ -2\end{array}\right]$ $\lambda=8 \Rightarrow-5 x+2 y=0$ or $y=\frac{5}{2} x \Rightarrow$ evecs. $\beta\left[\begin{array}{l}2 \\ 5\end{array}\right]$ $(0,0)$ $y=-2 x \text { and } y=\frac{5}{2} x$ $\lambda \neq 1$ in either case	M1A1 A1 \checkmark M1 A1 A1 B1 B1 \checkmark E1	6 1 2	ft if suitable Either case attempted Any (non-zero) multiple will do Accept "The origin" or " O " ft (a) oe
	Total		9	

Question Number and part	Solution	Marks	Total	Comments
6(a)	$\bmod (8 \mathrm{i})=8 \quad \text { and } \quad \arg (8 \mathrm{i})=\frac{\pi}{2}$	B1B1	2	
(b)	$z^{3}=\left(8, \frac{\pi}{2}\right),\left(8, \frac{5 \pi}{2}\right),\left(8,-\frac{3 \pi}{2}\right)$	B1		
	$\Rightarrow z=\left(2, \frac{\pi}{6}\right),\left(2, \frac{5 \pi}{6}\right),\left(2,-\frac{\pi}{2}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$		Cube root of mods args $\div 3$
	$=2 \mathrm{e}^{\frac{\pi \mathrm{i}}{6}}, 2 \mathrm{e}^{\frac{5 \pi \mathrm{i}}{6}}, 2 \mathrm{e}^{-\frac{\pi \mathrm{i}}{2}}$	A1	4	All 3 correct, any polar form (allow final answer with $\frac{3 \pi}{2}$)
(c)	Argand diagram: All points equidistant from O Equally spaced around circle	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	All on circle, centre O, radius 2 At $30^{\circ}, 150^{\circ}, 270^{\circ}$
(d)	Euler's Rule or from diagram: $2(\cos \theta+\mathrm{i} \sin \theta)$	M1 \checkmark		Any one case ft
			3	Any one correct; all 3 correct
	Total		11	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

