# AQA 

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

## General Certificate of Education

# Mathematics and Statistics 6320 Specification B 

MBP5 Pure 5

## Mark Scheme <br> 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

## Key to Mark Scheme



## Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
isw
bod
wr
fb
deducted $x$ marks for mis-copy deducted $x$ marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae book

## Application of Mark Scheme

## No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

## Mathematics and Statistics B Pure 5 MBP5 June 2005

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \[
\begin{aligned}
\& h=0.5 \\
\& \text { Integral }=h / 2\{\ldots\} \\
\& \{\ldots\}=[\mathrm{f}(1)+\mathrm{f}(2.5)+2(\mathrm{f}(1.5)+\mathrm{f}(2))] \\
\& =\{1+(4 \sqrt{ } 2-1)+2[(2 \sqrt{ } 2-1)+3]\} \\
\& \{4 \sqrt{ } 2-1=4.65685 . .\} \quad\{2 \sqrt{ } 2-1=1.82842 \ldots\} \\
\& \text { Integral to } 3 \mathrm{sf}=3.83
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 4 \& \begin{tabular}{l}
Where \(\mathrm{f}(x)=2^{x}-1\). \\
All 4 terms correct.[accept 3 dp or better for each term or 15.31(37...)seen or \(3.82(8 \ldots)\) seen if index or surd form not given] cao Must be 3.83
\end{tabular} \\
\hline \& Total \& \& 4 \& \\
\hline 2(a) \& \[
\begin{aligned}
\& (1+8 x)^{\frac{1}{2}}=1+k x+\ldots . . \\
\& \binom{\left(\frac{1}{2}\right)(8 x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(8 x)^{2}+}{\left(\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}(8 x)^{3}+\ldots\right.} \\
\& =1+4 x \\
\& \quad-8 x^{2} \\
\& \quad+32 x^{3} \quad(\ldots . .) \\
\& \text { Valid for }-\frac{1}{8}<x<\frac{1}{8}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
A1 \\
B1
\end{tabular} \& 4 \& \begin{tabular}{l}
Valid start to binomial expn. \\
Accept \(a=4, b=-8, c=32\) sc if \(0 / 3\) give \(B 1\) for at least two unsimplified terms correct in \(\}\) above oe Accept \(|x| \leq \frac{1}{8}\) oe
\end{tabular} \\
\hline \& Total \& \& 5 \& \\
\hline \begin{tabular}{l}
3(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
Asymptotes: \(x=0 ; y=-4\)
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=0-2 x^{-3}=-2 \text { at }(1,-3)
\] \\
Gradient of normal \(=\frac{1}{2}\) \\
Eqn of normal \(y+3=\frac{1}{2}(x-1)\)
\end{tabular} \& \begin{tabular}{l}
B1 B1 \\
B2 \\
B1 \\
M1 \\
m1 \\
A1
\end{tabular} \& 2

3

3 \& | If no contradiction, accept equations of asymptotes shown on the graph |
| :--- |
| Correct sketch |
| [B1 if either (i) one correct branch or |
| (ii) correct 2-branch shape translated or |
| (iii) 2-branch curve with intended symmetry about $y$-axis. |
| Only pts of intersection with $x$-axis at -0.5 and 0.5 |
| Attempts to find $y^{\prime}$ at $(1,-3)$ having got at least one 'term' correct in $y^{\prime}(x)$ |
| Uses $m \times m^{\prime}=-1$, numerical $m^{\prime}$ s. PI |
| Accept in any correct form provided cso | <br>

\hline \& Total \& \& 8 \& <br>
\hline
\end{tabular}

MBP5 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments <br>
\hline \multirow[t]{3}{*}{4(a)} \& $R \cos \alpha=1$ or $R \sin \alpha=1$ or $\tan \alpha=1$ \& M1 \& \& Accept seen; condone negative signs <br>
\hline \& $R^{2}=1^{2}+1^{2}$ \& M1 \& \& Altn Use two of results in line1. <br>
\hline \& $$
\Rightarrow R=\sqrt{2}, \alpha=\frac{\pi}{4}
$$ \& A1 \& 3 \& Need both:Accept $R=1.41, \alpha=0.78(5)$; condone $\alpha=45^{\circ}$ <br>
\hline \multirow[t]{4}{*}{(b)} \& $$
\sin (x+\alpha)=\frac{1}{R \sqrt{2}} \quad\{=0.5\}
$$ \& M1 \& \& Using (a) to reach $\sin (x+\alpha)=k \mathrm{PI}$ <br>
\hline \& $$
\begin{aligned}
& x+\alpha=2 \pi n+\sin ^{-1}(*), \\
& \text { also } x+\alpha=2 \pi n+\left[\pi-\sin ^{-1}(*)\right], \\
& (*=\text { cand's } 1 /(R \sqrt{ }) .) .
\end{aligned}
$$ \& m1 \& \& Accept degrees, rads., mix but need both sets of gen. solns....(watch out for valid equivalents) <br>
\hline \& $$
\begin{aligned}
& x+\alpha=2 \pi n+\frac{\pi}{6} \\
& x+\alpha=2 \pi n+\pi-\frac{\pi}{6}
\end{aligned}
$$ \& A1 \& \& oe condone degrees or mix but need both sets. <br>
\hline \& $$
\left\{\begin{array}{l}
x=2 \pi n-\frac{\pi}{12} ; 2 \pi n+\frac{7 \pi}{12} \\
{[x=2 \pi n-\{0.261 \text { to } 0.262 \text { inclusive }\}} \\
x=2 \pi n+\{1.83 \text { to } 1.84 \text { inclusive }\}]
\end{array}\right.
$$
$$
\int \ldots \ldots=R \int x \sin (x+\alpha) \mathrm{d} x
$$ \& A1

M1 \& 4 \& | Any equivalent general forms for $x$ in radians. |
| :--- |
| sc if m 0 then award B1 for either one general soln. or 2 particular solns. covering both branches condone degrees or mix. |
| In (c) do NOT penalise wrong values for $R$ and $\alpha$. |
| Use of part (a) | <br>

\hline \multirow{5}{*}{(c)} \& $$
\begin{aligned}
& \int x \sin (x+\alpha) \mathrm{d} x= \\
& -x \cos (x+\alpha)+\int \cos (x+\alpha) \mathrm{d} x
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\mathrm{m} 1 \\
\mathrm{~A} 1
\end{gathered}
$$
\] \& \& Condone sign errors or clear miscopy only Correct integration <br>

\hline \& $$
\int \ldots=R\{-x \cos (x+\alpha)+\sin (x+\alpha)\}+c
$$ \& A1 $\checkmark$ \& 4 \& ft sign errors in previous result. Condone absence of $+c$ <br>

\hline \& ALT Attempts to integrate both $x \sin x$ and $x \cos x$ by parts \& (M1) \& \& <br>

\hline \& $\int x \cos x=x \sin x-\int \sin x$ \& $$
\begin{aligned}
& (\mathrm{m} 1) \\
& (\mathrm{A} 1)
\end{aligned}
$$ \& \& Condone sign errors only. cao both <br>

\hline \& $\ldots=-x \cos x+x \sin x+\sin x+\cos x+\mathrm{c}$ \& $(\mathrm{A} 1 \checkmark)$ \& \& ft sign errors in previous result and condone abs. $+c$ <br>
\hline \& Total \& \& 11 \& <br>
\hline
\end{tabular}

MBP5 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
5(a) \\
(b)(i) \\
(ii) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\(\operatorname{At}(0,-1), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{0}{-1}=0\) \\
( so \(P\) is a stationary point)
\[
\begin{aligned}
\& \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{y(1)-x \frac{\mathrm{~d} y}{\mathrm{~d} x}}{y^{2}} \\
\& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{y(1)-x\left(\frac{x}{y}\right)}{y^{2}} \\
\& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{y^{2}-x^{2}}{y^{3}} \\
\& \operatorname{At}(0,-1), \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1-0}{-1}=-1<0
\end{aligned}
\] \\
so \(P\) is a maximum point
\[
\begin{aligned}
\& y \mathrm{~d} y=x \mathrm{~d} x \\
\& \frac{y^{2}}{2}=\frac{x^{2}}{2}+c \\
\& \frac{1}{2}=\frac{0}{2}+c \\
\& y^{2}=x^{2}+1
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
m1 \\
A1 \\
B1 \\
M1 \\
A1 \\
m1 \\
A1
\end{tabular} \& \[
3
\] \& \begin{tabular}{l}
(so..... ) not required \\
Clear use of quotient rule [or relevant product rule] \\
Subst. of \(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y}\) oe \\
ag cso \\
cso \\
Clear attempt to separate variables
\[
\frac{y^{2}}{2}=\frac{x^{2}}{2}
\] \\
Use of boundary conditions
\end{tabular} \\
\hline \& Total \& \& 9 \& \\
\hline \begin{tabular}{l}
6(a)(i) \\
(ii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)=2+4+4=10
\] \\
Magnitude of direction vectors are \(\sqrt{ } 21\) and \(\sqrt{ } 9\)
\[
10=\sqrt{ } 21 \times \sqrt{ } 9 \cos \theta
\]
\[
\cos \theta=\frac{10}{\sqrt{189}}\{=0.72739 \ldots\}
\] \\
\(\Rightarrow \theta=43.3^{\circ}\left\{=43^{\circ}\right.\) to nearest degree \(\}\)
\[
\begin{aligned}
\& (2+s)+(-1+2 s)+(-2+4 s)=20 \\
\& \Rightarrow s=3 \\
\& \Rightarrow Q \text { has position vector } 5 \mathbf{i}+5 \mathbf{j}+10 \mathbf{k}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1 \(\checkmark\)
\end{tabular} \& 1

3
3

3 \& | Award for one correct. |
| :--- |
| Use of dot product (ft on earlier values) |
| ag Accept without seeing 3sf if clear |
| ft a slip in finding $s$ |
| sc (cand uses $l_{2}$ ): |
| Mark as max M1A0A1 |
| $\{8.6 \mathbf{i}+6.6 \mathbf{j}+4.8 \mathbf{k}\}$ |
| Condone $(5,5,10)$ notation. | <br>

\hline \& Total \& \& 7 \& <br>
\hline
\end{tabular}

MBP5 (cont)

| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 7(a) | When $t=\frac{\pi}{2}, x=4 \sin \frac{\pi}{2}=4$ and |  |  |  |
|  | $y=\cos \frac{\pi}{2}=0 \text { ie }(4,0)$ | B1 | 1 | ag Accept any valid method |
| (b) | $\frac{\mathrm{d} x}{\mathrm{~d} t}=4 \cos t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=-\sin t$ | M1 |  | Attempts both and at least one correct (possibly implied) |
|  | $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}=\frac{-\sin t}{4 \cos t}=-\frac{1}{4} \tan t$ | A1 | 2 | ag obtained convincingly |
| (c)(i) | $\text { At } P, x=4 \sin \frac{\pi}{4}, y=\cos \frac{\pi}{4}$ | M1 |  | oe Accept $x=2.82$ to 2.83 inclusive Accept $y=$ awrt 0.71 |
|  | $\text { grad of tang. }=-\frac{1}{4} \tan \frac{\pi}{4}=-\frac{1}{4}$ | B1 |  |  |
|  | $\begin{aligned} & \text { Eq tang, } y-\cos \frac{\pi}{4}=-\frac{1}{4}\left(x-4 \sin \frac{\pi}{4}\right) \\ & \Rightarrow y-\frac{1}{\sqrt{2}}=-\frac{1}{4} x+\frac{1}{\sqrt{2}} \end{aligned}$ | M1 |  | oe |
|  | $\Rightarrow y=-\frac{1}{4} x+\sqrt{2}$ | A1 | 4 | ag cso obtained convincingly |
| (ii) | When $y=0, x=4 \sqrt{ }$; When $x=0, y=\sqrt{ } 2$ | M1 |  | Attempts to find pts where tangent intersects axes |
|  | Area of triangle $=4$ <br> Area shaded = | A1 |  | Must be justified |
|  | area of $\Delta$ - area 'under curve' | M1 |  |  |
|  | $\text { area 'under curve' }=\int_{0}^{\overline{2}} y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t$ | M1 |  | Need attempt to write integrand in terms of $t$. Condone wrong/missing limits |
|  | $=\int \cos t(4 \cos t) \mathrm{d} t$ | A1 |  | Ignore limits |
|  | Area shaded $=4-\int_{0}^{\frac{\pi}{2}} 4 \cos ^{2} t \mathrm{~d} t=\mathrm{pr}$. ans | A1 | 6 | ag cso be convinced; correct limits should have appeared before the printed answer stage |
| (iii) | Area shaded $=4-2 \int_{0}^{\frac{\pi}{2}}(1+\cos 2 t) \mathrm{d} t$ | M1 |  | Use of $2 \cos ^{2} t=1+\cos 2 t$ (condone sign errors) |
|  | $\ldots .=4-2\left[t+\frac{1}{2} \sin 2 t\right]_{0}^{\frac{\pi}{2}}$ | A1 |  | for [.....] |
|  | $\ldots=4-\pi$ | A1 | 3 | cso |
|  | Total |  | 16 |  |
|  | TOTAL |  | 60 |  |

