GCE 2005 January Series

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Mark Scheme

Mathematics and Statistics B

(MBP5)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

[^0]Key to Mark Scheme

Abbreviations used in Marking

Abstract

MC - x deducted x marks for mis-copy MR - \boldsymbol{x} deducted x marks for mis-read ISW ignored subsequent working BOD .given benefit of doubt WR work replaced by candidate FB .formulae booklet

Application of Mark Scheme

No method shown:

Correct answer without working mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down award credit for the complete solution only do not mark unless it has not been replaced award method and accuracy marks as appropriate

Mathematics and Statistics B Pure 5 MBP5 January 2005

Question Number and Part	Solution	Marks	Total	Comments
1(a) (b) (c)	$\begin{aligned} & y^{\prime}=2 x-\mathrm{e}^{x} \\ & y^{\prime \prime}=2-\mathrm{e}^{x} \\ & y^{\prime \prime \prime}=-\mathrm{e}^{x} \\ & y^{(\text {iv) }}=-\mathrm{e}^{x} \quad\left(\Rightarrow y^{\prime \prime \prime}=y^{(\text {iv })} \text { for all } x\right) \\ & y^{\prime \prime}=0 \Rightarrow \mathrm{e}^{x}=2 \\ & y^{\prime \prime \prime}=-\mathrm{e}^{x} \neq 0 \\ & x \text {-coord }=\ln 2(=0.693(147 . .)) \\ & y \text {-coord }=(\ln 2)^{2}-2(=-1.51(95 . .)) \end{aligned}$	B1 B1 $\sqrt{ }$ B1 M1 B1 Al $\sqrt{ }$ Al $\sqrt{ }$	1 4	ft on slip Put $y^{\prime \prime}=0$ and a start Check $y^{\prime \prime \prime} \neq 0$ Only ft on one slip Only ft on one slip. Condone missing bracket if no contradiction
	Total		7	
2	$\begin{aligned} & \mathrm{I} \approx \frac{0.5}{3}\{\ldots\} \\ & \{\ldots\}=1+4 \sqrt{1.25}+2 \sqrt{2}+4 \sqrt{3.25}+\sqrt{5} \\ & \mathrm{I} \approx \frac{0.5}{3}\left[\begin{array}{l} 1+4(1.118 \ldots .)+2(1.414 . .)+ \\ +4(1.8027 \ldots .)+2.236 \ldots \end{array}\right] \\ & =2.9579 \ldots \\ & \text { To } 3 \mathrm{dp} \text { the integral }=2.958 \end{aligned}$	B1 M1 A1 A1	4	Outside multiplier $\frac{0.5}{3}$. $f(0)+4 f(0.5)+2 f(1)+4 f(1.5)+f(2)$ attempted cao Must be 2.958
	Total		4	
3	$\begin{aligned} & 2 \sin x \cos x+\cos x=0 \text { oe } \\ & \cos x=0 \text { or } \sin x=-0.5 \\ & \cos x=0 \Rightarrow x=2 n \pi \pm \ldots \text { oe } \\ & \sin x=-0.5 \Rightarrow x=n \pi+(-1)^{n} \alpha \text { oe } \\ & x=2 n \pi \pm \pi / 2 \text { oe and } \\ & x=n \pi+(-1)^{n}(-\pi / 6) \text { oe } \end{aligned}$	M1 A1 m1 m1 A1	5	Either one Condone degrees Condone degrees Need both in rads. sc If m 0 m 0 award B1 for four particular solutions 'covering all positions' or general solution(s) for two positions (condone degrees)
	Total		5	

MBP5 (cont)

Question Number and Part	Solution	Marks	Total	Comments
4(a)(i)	$\begin{aligned} & (2-x)^{-2}=\left(2\left[1-\frac{x}{2}\right]\right)^{-2} \\ & =2^{-2}\left(1-\frac{x}{2}\right)^{-2}=\frac{1}{4}\left(1-\frac{x}{2}\right)^{-2} \end{aligned}$	B1	1	ag Be convinced
	$\left(\begin{array}{l} \left(1-\frac{x}{2}\right)^{-2} \approx\left(1+(-2)\left(\frac{-x}{2}\right)+\frac{(-2)(-3)}{2!}\left(\frac{-x}{2}\right)^{2}+\ldots\right) \\ \quad=1+x+\frac{3}{4} x^{2}+\ldots \end{array}\right.$	M1 A1		Condone $\frac{x}{2}$ in place of $-\frac{x}{2}$ Correct expansion and at least two of the three terms tidied correctly
	$(2-x)^{-2}=\frac{1}{4}\left(1+x+\frac{3}{4} x^{2}\right)$	A1	3	
(ii1)(b)	Valid for $-2<x<2$	B2,1	2	Condone use of modulus sign. B1 for reasonable attempt
	$u=2-x \Rightarrow \mathrm{~d} u=-\mathrm{d} x$	B1		Accept $\frac{\mathrm{d} u}{\mathrm{~d} x}=-1$ oe (possibly implied)
	$\ldots=\int \frac{(2-u)}{u^{2}}(-1 \mathrm{~d} u)$	M1		all x^{\prime} s and $\mathrm{d} x$ 'eliminated';
	$\ldots . .=\int \frac{1}{u}-\frac{2}{u^{2}} \mathrm{~d} u$	m1		valid split of integrand oe
	$=\left[\ln u+\frac{2}{u}\right]$	m1		"[]", 2 terms at least one term correct...allow both negative
	$=\left[\ln u+\frac{2}{u}\right]_{2}^{\frac{3}{2}}=\left(\ln 1.5+\frac{4}{3}\right)-(\ln 2+1)$	m1		Valid use of corresponding limits for u or a subst back to x with original limits used; dep only on $1^{\text {st }} \mathrm{M}$ but must have integrated
	$=\frac{1}{3}+\ln \frac{3}{4}=\frac{1}{3}-\ln \frac{4}{3}$	A1	6	cao be convinced
	Total		12	

MBP5 (cont)

Question Number and Part	Solution	Marks	Total	Comments
$5(\mathrm{a})$ (b) (c)(i) (ii)	$\begin{aligned} & x^{2}-2 y x+5 y-6 \quad\{=0\} \\ & \Delta=(-2 y)^{2}-4(1)(5 y-6) \\ & \ldots .=4\left(y^{2}-5 y+6\right) \\ & \ldots . .=4(y-2)(y-3) \end{aligned}$ For no real $x, \Delta<0 \Rightarrow 2<y<3$ $\begin{aligned} & y=2 \Rightarrow x^{2}-4 x+4=0 \\ & y=3 \Rightarrow x^{2}-6 x+9=0 \end{aligned}$ $\Rightarrow x=2 \Rightarrow \text { Turning point }(2,2)$ $\Rightarrow x=3 \Rightarrow \text { Turning point }(3,3)$ Vert. asym. $x=\frac{5}{2}$ $\frac{x^{2}-6}{2 x-5} \equiv \frac{1}{2} x+\frac{5}{4}+\frac{\frac{1}{4}}{2 x-5}$ as $x \rightarrow \infty, y \rightarrow \frac{1}{2} x+\frac{5}{4}$ Oblique asymptote is $y=\frac{1}{2} x+\frac{5}{4}$	M1 A1 m1 A1 m1 A1 M1 A1 A1 B1 M1 A1	1	Start to form quadratic in x with y involved Correct quadratic in x Considers $b^{2}-4 a c$. Accept $(2 y)^{2}$ for $(-2 y)^{2}$ If linked with 0 , ' 4 ' may be omitted. Can be given even if a sign error causes prev. A0 Attempt to factorise or solve ag cso Be convinced. NB sign error in coeff of x in M1 line can earn max of M1A0m1A1m1A0 Substitute $y=2$ or $y=3$ to form a valid quadratic in x. sc (Hence not used) Give correct answers B1 if no obvious errors in solution Division by $2 x-5$
	Total		12	
6(a)	$\begin{array}{ll} \hline & 5+s=-32 t \\ \text { Intersect if } & 3+s=4 t \\ & 1+s=8-3 t \end{array}$ Solving any two simultaneously gives $s=-2 \text { and } t=3$ checking in $3^{\text {rd }}$ eqn position vector of point of intersection is $\begin{aligned} & \left(\begin{array}{c} 3 \\ 1 \\ -1 \end{array}\right) \\ & \mathbf{r}=\left(\begin{array}{c} 3 \\ 1 \\ -1 \end{array}\right)+\lambda\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right)+\mu\left(\begin{array}{c} 2 \\ -1 \\ -3 \end{array}\right) \mathrm{oe} \end{aligned}$	M1 m1 A1 B1 B2,1 $\sqrt{ }$	4 2	Clear comparison to form two equations and attempt to solve Solving two eqns simultaneously as far as a value for s or a value for t $s=-2$ and $t=3$ with a valid check in a $3^{\text {rd }}$ eqn. cao B1 if a small ft error
	Total		6	

MBP5 (cont)

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Set and published by the Assessment and Qualifications Alliance.

 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

