

GEE

Mathematics \& Statistics B

Unit MBP4

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and part \& Solution \& Marks \& Total \& Comments

\hline 1(a)

(b) \& \[
$$
\begin{aligned}
& A=500 \\
& 10 k=\ln \left(\frac{750}{A}\right) \\
& k=\frac{1}{10} \ln \left(\frac{3}{2}\right) \approx 0.0405 \\
& k t=\ln \left(\frac{1500}{A}\right) \\
& t=10 \frac{\ln 3}{\ln 1.5} \approx 27.1
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 | \& \[

2

\] \& | Substitute $P=750, t=10$ and attempt to find k using \ln |
| :--- |
| Exact value or at least $1 \mathrm{SF} 0.0405465 \ldots$ |
| Accept 27.095 (11291...) |
| Condone more SF rounding to 27.1 if correct working |

\hline \& Total \& \& 5 \&

\hline | 2(a) |
| :--- |
| (b)(i) |
| (ii) | \& | $\frac{\mathrm{d} y}{\mathrm{~d} x}=8\left(x^{3}+1\right)^{-1}-24 x^{3}\left(x^{3}+1\right)^{-2}$ |
| :--- |
| When $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2$ $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t} \\ & =-2 \times 0.8=-1.6 \end{aligned}$ |
| Negative sign $\Rightarrow y$ decreasing |
| Losing height, going down etc | \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1 $\sqrt{ }$ |
| E1 | \& \[

3
\]

$$
2
$$

\[
1

\] \& | Product (must have -ve powers)/quotient rule attempt $\frac{8-16 x^{3}}{\left(x^{3}+1\right)^{2}}$ |
| :--- |
| Correct unsimplified |
| cso; all working must be correct |
| Any correct version - stated or used |
| ft from their part(a) answer |
| ft positive value $\Rightarrow y$ increasing |
| NOT speed/rate of change etc decreasing |

\hline \& Total \& \& 6 \&

\hline | $3(\mathrm{a})$ |
| :--- |
| (b)(i) |
| (ii) | \& \[

$$
\begin{aligned}
& \mathrm{p}(-1)=2 \times-3 \times-5 \\
& \frac{A}{x+3}+\frac{B}{x-2}+\frac{C}{x-4} \\
& \quad A=2, \quad B=-7, \quad C=5 \\
& A \ln (x+3)+B \ln (x-2)+C \ln (x-4) \\
& {[2 \ln 9-7 \ln 4+5 \ln 2]} \\
& \quad-[2 \ln 8-7 \ln 3+5 \ln 1] \\
& =4 \ln 3-14 \ln 2+5 \ln 2-6 \ln 2+7 \ln 3 \\
& =11 \ln 3-15 \ln 2
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 $\sqrt{ }$ |
| m1 |
| B1 |
| A1 | \& 2

3

5 \& | Or full long division as far as remainder |
| :--- |
| Comparing coeffs or substituting values |
| First term correct |
| All terms correct |
| Integration involving \ln |
| ft their A, B, C |
| Sub'n of limits 6 and 5 (condone slip) |
| 2 correct simplifications of $p \ln 2, q \ln 3$ |
| $\ln 9=2 \ln 3, \ln 4=2 \ln 2, \ln 8=3 \ln 2$ |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

Question Number and part	Solution	Marks	Total	Comments
4(a)(i)	$x^{2}+y^{2}-10 x-6 y+\frac{111}{4}$	M1		Attempt at completing square or one coordinate correct (generous)
(ii)	Centre (5, 3)	A1	2	
	$r^{2}=25+9-\frac{111}{4}=\frac{25}{4}$	M1		3 numbers - condone sign error
		A1	2	oe
(b)(i)	$\frac{\|5 \times 3-3 \times 4-16\|}{\sqrt{\left(3^{2}+4^{2}\right)}}$	M1		Strict on formula use but ft their centre
	$=\frac{13}{5}$	A1	2	Must be positive
	$2.6>$ radius \Rightarrow does NOT intersect	E1 \checkmark	1	ft deduction from their distance \& radius
(iii)	$\begin{array}{r} m_{1}=2 ; \quad m_{2}=\frac{3}{4} \\ \tan \theta=\left\|\frac{2-\frac{3}{4}}{1+\frac{3}{2}}\right\|=\frac{\frac{5}{4}}{\frac{5}{2}}=\frac{1}{2} \end{array}$	B1		Both gradients given
		M1 A1	3	Use of angle between lines formula or equivalent method ag $\quad\left(\Rightarrow \theta=\tan ^{-1} \frac{1}{2}\right.$ not needed $)$
	Total		10	
5(a)	$\begin{aligned} & x_{2}=3.742 \\ & x_{3}=3.968 \\ & x_{4}=3.996 \end{aligned}$	B1 B1		Condone more than 3 dps if rounding to these values.
		B1	3	cso
(b)(i)	$\begin{aligned} & x_{n+1} \rightarrow L ; x_{n} \rightarrow L \Rightarrow L=\sqrt{(L+12)} \\ & \Rightarrow L^{2}=L+12 \Rightarrow L^{2}-L-12=0 \end{aligned}$	M1		
		A1	2	
(ii)	$(L-4)(L+3)=0$	M1		Factor or formula attempt
	$\begin{aligned} & L=4, L=-3 \\ & x_{n}>0, \forall n \Rightarrow L=4 \end{aligned}$	A1	2	Rejecting negative value and answer $=4$ Award M1,A0 if value 4 is given with no evidence of discarding the negative value
(c)	Vertical line to curve first then horizontal line to $y=x$ Staircase convergence shown (at least 2 horizontal sections)	M1		
		A1	2	
	Total		9	

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and part \& Solution \& Marks \& Total \& Comments

\hline 6(a)

(b) \& \[
$$
\begin{gathered}
\cos x \cos \frac{5 \pi}{6}-\sin x \sin \frac{5 \pi}{6}=\sin x \\
\cos \frac{5 \pi}{6}=-\frac{\sqrt{3}}{2} \\
\sin \frac{5 \pi}{6}=\frac{1}{2} \\
\sqrt{3} \cos x+3 \sin x=0 \\
\Rightarrow \sqrt{3} \sin x+\cos x=0 \\
\tan x=-\frac{1}{\sqrt{3}} \\
x=\frac{5 \pi}{6}, \frac{11 \pi}{6}
\end{gathered}
$$

\] \& | M1 |
| :--- |
| B1 |
| B1 |
| A1 |
| M1 |
| A1 |
| A1 | \& 4

3 \& | $-\frac{\sqrt{3}}{2} \cos x-\frac{1}{2} \sin x=\sin x$ |
| :--- |
| Be convinced $\sqrt{3}$ not fudged ag $\tan x=\ldots, \sin ^{2} x=\ldots, \cos ^{2} x=\ldots$ |
| Condone 150° or $2.61799 \ldots$...rads must both be in radians and in terms of π |

\hline \& Total \& \& 7 \&

\hline | (ii) |
| :--- |
| (b) |
| (c)(i) |
| (ii) |
| (iii) | \& | $\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =2 \sec ^{2} 2 x \\ x & =\frac{\pi}{6} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=8 \end{aligned}$ |
| :--- |
| Tangent equation is $y-\sqrt{3}=8\left(x-\frac{\pi}{6}\right)$ $\begin{aligned} & {\left[\frac{1}{2} \tan 2 x-\ln \sec 2 x\right]} \\ & \alpha=\frac{\pi}{8} \\ & \quad(\pi) \int(\tan 2 x-1)^{2} \mathrm{~d} x \end{aligned}$ |
| sight of $\quad \sec ^{2} 2 x=1+\tan ^{2} 2 x$ |
| Shown to equal $\begin{aligned} & V=\pi \int_{0}^{\alpha}\left(\sec ^{2} 2 x-2 \tan 2 x\right) \mathrm{d} x \\ & \frac{1}{2} \tan \frac{\pi}{4}-\ln \sec \frac{\pi}{4} \text { or } \frac{1}{2} \tan 2 \alpha-\ln \sec 2 \alpha \\ & \Rightarrow V=\pi\left(\frac{1}{2}-\ln \sqrt{2}\right) \\ & \quad=\frac{\pi}{2}(1-\ln 2) \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| B1 |
| B1 \checkmark |
| M1 |
| A1 |
| A1 |
| B1 |
| M1 |
| B1 |
| A1 |
| M1 |
| A1 | \& 2

2

3
1
3
3

2 \& | $A \sec ^{2} k x$ |
| :--- |
| correct |
| Differentiation must be correct |
| ft gradient (any form for line) |
| Integration : $A \tan 2 x$ or $B \ln \sec 2 x$ |
| One term correct |
| All terms correct $V=\pi \int_{0}^{\alpha}\left(\tan ^{2} 2 x+1-2 \tan 2 x\right) \mathrm{d} x$ |
| ag |
| Limits used on their answer to (b) |
| Accept in terms of α |
| Condone missing π for M1 |
| ag proved convincingly $\ln \sqrt{2}=\frac{1}{2} \ln 2$ etc |

\hline \& Total \& \& 13 \&

\hline \& TOTAL \& \& 60 \&

\hline
\end{tabular}

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

