AQA

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBP3 Pure 3

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
B	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
\checkmark or ft or \mathbf{F}		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
$-x$ ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
isw
bod
$\mathbf{w r}$
$\mathbf{f b}$

deducted x marks for mis-copy deducted x marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae book

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down award credit for the complete solution only do not mark unless it has not been replaced award method and accuracy marks as appropriate

Mathematics and Statistics B Pure 3 MBP3 June 2005

MBP3 (cont)

Q	Solution	Marks	Total	Comments
3(a) (b) (c)(i) (ii)	$\begin{aligned} & \operatorname{det} \mathbf{M}=5 k-14 \\ & \begin{array}{l} \|\operatorname{det} \mathbf{M}\|=1 \quad \Rightarrow k=3 \\ M^{-1}=\frac{1}{6}\left[\begin{array}{ll} 5 & 7 \\ 2 & 4 \end{array}\right] \quad \text { or } k=2.6 \\ {\left[\begin{array}{l} x \\ y \end{array}\right]=\frac{1}{6}\left[\begin{array}{ll} 5 & 7 \\ 2 & 4 \end{array}\right]\left[\begin{array}{l} 1 \\ 7 \end{array}\right] \quad x=9, \quad y=5} \end{array} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3 2 3	Condone $\operatorname{det} \mathbf{M}=1$ Condone a "pair" of slips in matrix, or multiplication by/ omission of $\operatorname{det} \mathbf{M}$ for M1 Must premultiply by \mathbf{M}^{-1} ft their inverse Coords are $(9,5)$
	Total		9	
$4(a)$ (b)	$\begin{aligned} & \frac{4 \pm \sqrt{16-52}}{2} \\ & \begin{aligned} & \sqrt{-36}=6 \mathrm{i} \text { or } \quad \begin{array}{r} \sqrt{-9} \end{array} \quad 3 \mathrm{i} \\ & \Rightarrow \Rightarrow x=2 \pm 3 \mathrm{i} \end{aligned} \\ & (p+3 \mathrm{i})^{2}=p^{2}+6 p \mathrm{i}-9 \end{aligned}$ Comparing real/imag parts $p=2 ; \quad q=-5$	M1 B1 A1 B1 M1 A1	3 3	Use of quadratic equation formula or completing square $6 p=12 \quad \text { or } \quad p^{2}-9=q$
	Total		6	
5	When $n=1 ;$ LHS $=\frac{1}{2} ;$ RHS $=2-\frac{3}{2}=\frac{1}{2}$; Assume formula true for $n=k$ Add $(k+1)$ th term to both sides $\begin{aligned} & \text { namely } \frac{k+1}{2^{k+1}} \\ & \text { RHS }=2-\frac{k+2}{2^{k}}+\frac{k+1}{2^{k+1}}=2-\frac{* * *}{2^{k+1}} \\ &=2-\frac{\{2 k+4-k-1\}}{2^{k+1}}=2-\frac{k+3}{2^{k+1}} \end{aligned}$ Result true for $n=k+1$ Hence true for $n=1,2,3$ etc by induction	B1 E1 B1 M1 A1	5	(True when $n=1$) Plus the conclusion; hence true ... 2 - attempt at common denominator Must have conclusion to earn E1 mark above
	Total		5	

MBP3 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i) (ii) (b)(i) (ii)	Maximum value of $r=5$ when $\theta=\pi$ Minimum value of $r=1$ when $\theta=0$ Symmetry about $\theta=0$ Correct graph - approx 5: 1 ratio $\begin{aligned} & 8 c^{2}+2 c-3=0 \\ & \Rightarrow(2 c-1)(4 c+3)=0 \\ & \cos \theta=\frac{1}{2}, \quad \cos \theta=-\frac{3}{4} \end{aligned}$ Use of $r=3-2 \cos \theta$ to find r $\begin{array}{r} {\left[2, \frac{\pi}{3}\right],\left[2,-\frac{\pi}{3}\right],\left[\frac{9}{2}, \cos ^{-1}(-0.75)\right]} \\ {\left[\frac{9}{2},-\cos ^{-1}(-0.75)\right]} \end{array}$	B1 B1 B1 B1 B1 B1 M1 A1 M1 Al $\sqrt{ }$ A1 $\sqrt{ }$ A1	2 2 4	condone angles $\bmod 2 \pi$ Attempt to factorise or solve quad eqn or using $r=8 \cos ^{2} \theta$ one pair of matching r and $\theta \quad \mathrm{ft}$ second pair of matching r and $\theta \mathrm{ft}$ All 4 points correct
	Total		12	
7(a)(i) (ii) (b)(i) (ii) (c)(i) (ii)	$£ 15000$ £5 000 $\frac{\mathrm{d} V}{\mathrm{~d} t}=-2500 t^{-\frac{1}{2}}$ When $t=4 ; \frac{\mathrm{d} V}{\mathrm{~d} t}=-1250$ Car is depreciating (at this instant in time) at a rate of $£ 1250$ per year $\begin{aligned} & \log V=\log a+\log b^{-t} \\ &=\log a-t \log b \end{aligned}$ $\log 11500=\log a-\log b \quad$ and $\log 5000=\log a-4 \log b$ $\begin{array}{rl} 3 \log b=\log (115 / 50) \text { or } 3 \log a & =\log * * \\ b & =1.32 \\ a=15 & 200 \end{array}$	B1 B1 M1 A1 A1 E1 \checkmark E1 \checkmark M1 A1 B1 $\sqrt{ }$ M1 A1 A1	1 1 3 2 2 4	cso ft increasing in value if >0 in (b) (i) One rule of logs used properly or $11500=a / b \quad \& \quad 5000=a / b^{4}$ or $\quad b^{3}=2.3$ Condone 15180
	Total		13	

MBP3 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
8(a) \\
(b) \\
(c)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& p \otimes e=p \quad \Rightarrow p+e+p e=p \Rightarrow e=0 \\
\& p \otimes 3=p+3+3 p \quad \quad \begin{array}{l}
p \otimes 3=0 \\
4 p=-3 ; \quad \text { Hence } p=-\frac{3}{4} \\
\\
(p \otimes q) \otimes r \\
=(p+q+p q)+r+(p+q+p q) r \\
=p+q+r+p q+q r+r p+p q r \\
p \otimes(q \otimes r) \quad \text { considered } \\
\quad=p+(q+r+q r)+p(q+r+q r)
\end{array}
\end{aligned}
\] \\
Shown to equal \(\quad(p \otimes q) \otimes r\) yes, it is associative
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
1 \\
3 \\
2 \\
2
\end{tabular} \& \begin{tabular}{l}
or \(p \otimes 0=p+0+0=p\) etc \\
or \(3 \otimes q=3+q+3 q\) \\
or \(3 \otimes q=0\) \\
full marks at this stage if correct
\end{tabular} \\
\hline \& Total \& \& 8 \& \\
\hline 9(a)

(b) \& \& | M1 |
| :--- |
| B1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 | \& 3

4 \& | Hyperbola one branch correct or two half branches correct |
| :--- |
| $(2,0)$ and $(-2,0)$ marked or stated good symmetrical hyperbola |
| Move left by one etc scores M1, A0 |

\hline \& Total \& \& 7 \&

\hline \& TOTAL \& \& 80 \&

\hline
\end{tabular}

