version: 1.0 9/9/2005

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBP3 Pure 3

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
−x ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC-x	deducted x marks for mis-copy
MR-x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

No method shown:Correct answer with

mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

Mathematics and Statistics B Pure 3 MBP3 June 2005

Q	Solution	Marks	Total	Comments
1(a)(i)	$\left(\frac{3}{4},0\right)$ and $\left(0,-\frac{3}{2}\right)$	B1 B1	2	
(ii)	Asymptote at $x = 2$ and at $y = -4$	B1 B1	2	
(iii)	x	M1 A1	2	One branch of hyperbola roughly correct Good graph
(b)	$4x - 3 = 2 - x \implies x = 1$ Using graph	M1		M0 for $(4x-3) < (2-x)$
	Using graph, $x < 1$	B1		or $(4x-3)(2-x) < (2-x)^2$ M1
	Also $x > 2$	B1	3	5(2-x)(x-1) < 0 or quotient A1 Hence $x < 1, x > 2$ A1
	Total		9	
2 (a)(i)	$\alpha + \beta = 3$; $\alpha\beta = 5$	B1 B1	2	
(ii)	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ $= 9 - 10 = -1$ Since $\alpha^{2} + \beta^{2} < 0$, α, β not both real	M1 A1√ E1√	3	
(iii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$ $= 27 - 45 = -18$	M1 A1	2	Or $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ etc ag
(b)	$\sum \text{roots} = \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta}$	M1		
	$=-\frac{18}{5}$	A1		
	$x^2 - \left(-\frac{18}{5}\right)x + 5(=0)$	M1		Formation of quadratic using sum of roots and attempt at product of roots = $\alpha\beta$ = 5
	$5x^2 + 18x + 25 = 0$	A1	4	cso (integer coefficients and = 0)
	Total		11	

MBP3 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$\det \mathbf{M} = 5k - 14$	B1	1	
(b)	$ \det \mathbf{M} = 1$	M1		Condone det $\mathbf{M} = 1$
	$\Rightarrow k=3$	A1		
	or $k = 2.6$	A1	3	
(c)(i)	$M^{-1} = \frac{1}{6} \begin{bmatrix} 5 & 7 \\ 2 & 4 \end{bmatrix}$	M1	2	Condone a "pair" of slips in matrix, or
	$\frac{m}{6}\begin{bmatrix} 2 & 4 \end{bmatrix}$	A1	2	multiplication by/ omission of det M for M1
(ii)	$ \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 5 & 7 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 7 \end{bmatrix} $	M1		Must premultiply by M ⁻¹ ft their inverse
	x = 9	A 1		
	y = 5	A1	3	Coords are (9,5)
	Total		9	
4(a)	$\frac{4\pm\sqrt{16-52}}{2}$	M1		Use of quadratic equation formula or completing square
	$\sqrt{-36} = 6i$ or $\sqrt{-9} = 3i$	B1		
	$\Rightarrow x = 2 \pm 3i$	A1	3	
<i>a</i> >	_	D.1		
(b)	$(p+3i)^2 = p^2 + 6pi - 9$	B1		
	Comparing real/imag parts	M1	2	$6p = 12$ or $p^2 - 9 = q$
	p=2; $q=-5$	A1	3	
	Total		6	
5	When $n=1$; LHS = $\frac{1}{2}$; RHS = $2 - \frac{3}{2} = \frac{1}{2}$;	B1		(True when $n=1$)
	2 2 2	DI		(True when $n=1$)
	Assume formula true for $n = k$	E1		Plus the conclusion; hence true
	Add $(k+1)$ th term to both sides			
	namely $\frac{k+1}{2^{k+1}}$	B1		
	namely $\frac{1}{2^{k+1}}$	DI		
	RHS = $2 - \frac{k+2}{2^k} + \frac{k+1}{2^{k+1}} = 2 - \frac{***}{2^{k+1}}$	M1		2 – attempt at common denominator
				•
	$= 2 - \frac{\{2k+4-k-1\}}{2^{k+1}} = 2 - \frac{k+3}{2^{k+1}}$	A1	5	
	Result true for $n = k+1$			
	Hence true for $n=1, 2, 3$ etc by induction			Must have conclusion to earn
				E1 mark above
	Total		5	

MBP3 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	Maximum value of $r = 5$	B1		
	when $\theta = \pi$	B1		condone angles mod 2π
	Minimum value of $r = 1$	B1	4	
	when $\theta = 0$	B1	4	
(ii)	Symmetry about $\theta = 0$	В1		
	Correct graph – approx 5: 1 ratio	B1	2	
		21	_	
(b)(i)	$8c^2 + 2c - 3 = 0$			
	$8c^{2} + 2c - 3 = 0$ $\Rightarrow (2c - 1)(4c + 3) = 0$ $\cos \theta = \frac{1}{2}, \cos \theta = -\frac{3}{4}$			
	$\Rightarrow (2c-1)(4c+3) = 0$	M1		Attempt to factorise or solve quad eqn
	2 1 2 3			
	$\cos\theta = \frac{1}{2}, \cos\theta = -\frac{1}{4}$	A 1	2	
	-			
(ii)	Use of $r = 3 - 2\cos\theta$ to find r	M1		or using $r = 8\cos^2\theta$
	$\lceil \pi \rceil \lceil \pi \rceil \lceil 9 \rceil$	A 1√		one pair of matching r and θ ft
	$\left[2, \frac{\pi}{3}\right], \left[2, -\frac{\pi}{3}\right], \left[\frac{9}{2}, \cos^{-1}(-0.75)\right]$	A 1√		second pair of matching r and θ ft
	$\left[\frac{9}{2}, -\cos^{-1}(-0.75)\right]$	A1	4	All 4 points correct
		711	•	Till I politic contect
	Total		12	
	Total		12	
7(a)(i)	£15 000	B1	1	
(ii)	£5 000	B1	1	
(b)(i)	$dV = \frac{1}{2}$	M1		
	$\frac{dt}{dt} = -2500t^{-2}$	A 1		
	$\frac{dV}{dt} = -2500t^{-\frac{1}{2}}$ When $t = 4$; $\frac{dV}{dt} = -1250$			
	when $t = 4$; $\frac{1}{dt} = -1250$	A1	3	cso
(ii)	Car is depreciating (at this instant in time)	E1√		ft increasing in value if > 0 in (b) (i)
	at a rate of £1 250 per year	E1√	2	
(6)(2)				One rule of logg used preparate
(c)(i)	$\log V = \log a + \log b^{-t}$	M1	2	One rule of logs used properly
	$= \log a - t \log b$	A1	2	
(ii)	$\log 11\ 500 = \log a - \log b \qquad \text{and} \qquad$			
	$\log 17 500 \log a - \log b$ $\log 5 000 = \log a - 4 \log b$	B1√		or $11500 = a/b$ & $5000 = a/b^4$
	$3 \log b = \log (115/50)$ or $3 \log a = \log **$	M1		or $b^3 = 2.3$
	b = 1.32	A1		
	$a = 15\ 200$	A1	4	Condone 15 180
	T-4-1		12	
	Total		13	

MBP3 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$p \otimes e = p \implies p + e + pe = p \implies e = 0$	B1	1	or $p \otimes 0 = p + 0 + 0 = p$ etc
(b)	$p \otimes 3 = p + 3 + 3p$	M1		or $3 \otimes q = 3 + q + 3q$
	$p \otimes 3 = 0$	M1		or $3 \otimes q = 0$
	$p \otimes 3 = 0$ $4p = -3 ; \qquad \text{Hence } p = -\frac{3}{4}$	A1	3	
(c)(i)	$(p \otimes q) \otimes r$			
	= (p+q+pq)+r+(p+q+pq)r	M1		full marks at this stage if correct
	= p + q + r + pq + qr + rp + pqr	A1	2	
(ii)	$p \otimes (q \otimes r)$ considered	M1		
	= p + (q+r+qr) + p(q+r+qr)			
	Shown to equal $(p \otimes q) \otimes r$			
	yes, it is associative	A 1	2	
	Total		8	
9(a)	<i>y</i>	M1		Hyperbola one branch correct or two half branches correct
	-2 O 2 x	B1		(2,0) and (-2,0) marked or stated
		A1	3	good symmetrical hyperbola
(b)	Translation	M1		
	through $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	A 1		Mayo left by one ate seems M1 A0
		A1		Move left by one etc scores M1, A0
	Stretch in <i>y</i> - direction Scale factor 2	M1 A1	4	
	Scare ractor 2	7 1 1	- T	
	Total		7	
	TOTAL		80	