GCE 2005 January Series

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Mark Scheme

Mathematics and Statistics B

(MBP3)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

[^0]Key to Mark Scheme

Abbreviations used in Marking

Abstract

MC - x deducted x marks for mis-copy MR - \boldsymbol{x} deducted x marks for mis-read ISW ignored subsequent working BOD .given benefit of doubt WR work replaced by candidate FB .formulae booklet

Application of Mark Scheme

No method shown:

Correct answer without working mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down award credit for the complete solution only do not mark unless it has not been replaced award method and accuracy marks as appropriate

Mathematics and Statistics B Pure 3 MBP3 January 2005

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& z=3 \sqrt{2}\left(\cos \frac{3 \pi}{4}+\mathrm{i} \sin \frac{3 \pi}{4}\right)=-3+3 \mathrm{i} \\
\& w^{2}=1-3-2 \mathrm{i} \sqrt{3}
\end{aligned}
\] \\
so that \(w^{2}+2 w=-4 \in \mathbb{R}\)
\[
\begin{gathered}
\frac{4}{w}=\frac{4}{-1+\mathrm{i} \sqrt{3}} \times \frac{-1-\mathrm{i} \sqrt{3}}{-1-\mathrm{i} \sqrt{3}} \\
=-1-\mathrm{i} \sqrt{3} \\
w-\frac{4}{w}=2 \mathrm{i} \sqrt{3}
\end{gathered}
\]
\end{tabular} \& \begin{tabular}{l}
M1 A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 2
2

3 \& | Give M1 if either a, b correct |
| :--- |
| cao |

\hline \& Total \& \& 7 \&

\hline 2 \& | $\begin{aligned} & \text { Multiplying by }(3-x)^{2} \\ & \begin{array}{l} 3-x)\{3 x+1-2(3-x)\}>0 \\ 5(x-1)(x-3)<0 \\ \qquad 1<x<3 \end{array} \end{aligned}$ |
| :--- |
| ALTERNATIVE 1: |
| For $x<3,3 x+1>2(3-x)$ $\Rightarrow x>1$ |
| For $x>3,3 x+1<2(3-x)$ $\Rightarrow x<1 \Rightarrow \text { no solns. }$ |
| ALTERNATIVE 2: |
| Relevant graph drawn Identifying correct intersections Correct range deduced | \& M1

m1
B1 \checkmark
A1
M1
A1
M1
A1
M1 A1
B1
A1 \& 4

(4)

(4) \& | Collecting up on one side $x=1,3$ identified ft cao |
| :--- |
| ≥ 1 case correctly considered |
| Must have a definite conclusion |
| Ignore irrelevant y-values ft if appropriate |

\hline \& Total \& \& 4 \&

\hline 3(a)(i) \& \[
$$
\begin{gathered}
\mathbf{M}^{2}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
\end{gathered}
$$

\] \& | M1 |
| :--- |
| A1 | \& \& | Must be evidence of correct matrix multn. method |
| :--- |
| cao |

\hline (ii) \& $$
\mathbf{M}^{4}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$ \& B1 \checkmark \& 3 \& ft

\hline (b) \& | Rotation |
| :--- |
| (anticlockwise) through $1 / 2 \pi$ about 0 | \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\] \& 2 \& "acw" may be implicit

\hline (c) \& $$
\mathbf{N}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\] \& 2 \& Any suitable method made clear

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

MBP3 (cont)

Question Number and Part	Solution	Marks	Total	Comments
4(a)(i)	$\alpha+\beta=2, \quad \alpha \beta=1 / 2$	B1 B1	2	
(ii)	$(\alpha+\beta)^{2}-2 \alpha \beta=3$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$	2	ft (i)'s answers
(iii)	$\alpha^{2}+\beta^{2}+6(\alpha+\beta)+18=33$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \checkmark \end{aligned}$	2	ft (i) and (ii)'s answers
(b)	New product of roots $=1$	B1		
	New sum of roots $=\frac{(\alpha+3)^{2}+(\beta+3)^{2}}{\alpha \beta+3(\alpha+\beta)+9}$	M1		Form ready for substn.
	$=\frac{66}{31}$	A1 \checkmark		ft
	New eqn. is $31 y^{2}-66 y+31=0$	A1 \checkmark	4	ft . Must have integer coefficients and be an equation (coefft. $y^{2} \neq 1$)
	Total		10	
5(a)	$\ln y=\ln a+x \ln b$	B1	1	
(b)(i)	$\begin{array}{llllll}\ln y & 1.128 & 1.261 & 1.394 & 1.528 & 1.660\end{array}$	B1		3 roots (to ≥ 3 s.f.)
		B1		All roots to 3 d.p. (condone 1.66)
	Points plotted on graph provided	B1	3	Reasonably accurately
(ii)	"Good" straight line drawn	B1	1	
(c)(i)	$\begin{gathered} \text { From graph } x=3.4 \Rightarrow \ln y=1.44 / 5 \\ \Rightarrow y=4.24 \text { to } 4.26 \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Including un-logging attempt awrt
(ii)	Method for finding gradient:			Sim. Eqns. Approach OK also
	$\ln b \approx \frac{0.67}{0} \approx 1.32-4$	M1		For either/both M's
	$\begin{gathered} 0.5 \\ b=3.7-3.9 \end{gathered}$	A1		awrt
	Reading off y-intercept: $\ln a \approx 0.99$	M1		
	$a=2.7$	A1	4	awrt
	Total		11	

MBP3 (cont)

MBP3 (cont)

Question Number and Part	Solution	Marks	Total	Comments
8(a)(i)	Translation (// x-axis), vector $\left[\begin{array}{l}2 \\ 0\end{array}\right]$	M1 A1	2	B1 for equivalent correct description without "translation"
(ii)	$\begin{aligned} & (r \cos \theta-2)^{2}+(r \sin \theta)^{2}=4 \\ & r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)-4 r \cos \theta+4=4 \\ & \quad \text { Use of } \mathrm{c}^{2}+\mathrm{s}^{2}=1 \\ & \quad(r \neq 0) \Rightarrow r=4 \cos \theta \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { A1 } \end{gathered}$	4	Backwards approach is fine ag
(b)(i)	$r_{\text {max }}=8, r_{\text {min }}=0$	B1 B1	2	
(ii)				
		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		Symmetry in $\theta=1 / 2 \pi$ Symmetry in $\theta=0$
	-8 0	B1	3	All correct
(c)	Equating $8 \cos ^{2} \theta=4 \cos \theta$ and solving $\theta=1 / 3 \pi$ and $r=2$	$\begin{gathered} \text { M1 } \\ \text { A1 A1 } \end{gathered}$		
	$2{ }^{\text {nd }}$ point $\theta=-1 / 3 \pi, r=2$	A1J	4	Or ft $2 \pi-\left(1^{\text {st }} \theta\right)$, same r
	Total		15	

MBP3 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number \\
and Part
\end{tabular} \& Solution \& Marks \& Total \& Comments \\
\hline \multirow[t]{7}{*}{9(a)

(b)(i)} \& | For $n=1$, LHS $=$ RHS $=96$ |
| :--- |
| Clear induction hypothesis somewhere |
| Correct $(k+1)^{\text {th }}$ term used Some $(\mathrm{k}+1)^{\text {th }}$ term added both sides $\begin{array}{r} (\mathrm{k}+2)(\mathrm{k}+3)(\mathrm{k}+4)\{\mathrm{k}+1+4\}-24 \\ =[(k+1)+1][(k+1)+2][(k+1)+3] \ldots \\ \ldots[(k+1)+4]-24 \end{array}$ | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { E1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { m1 }
\end{aligned}
$$

\] \& \& | True case $n=1$ $4(k+2)(k+3)(k+4)$ |
| :--- |
| Factorising attempt |

\hline \& Or explaining that formula true for $n=k \Rightarrow$ true also for $n=k+1$ \& A1 \& 6 \& Convincingly

\hline \& $$
\frac{r+3-(r+1)}{(r+1)(r+2)(r+3)} \equiv \frac{2}{(r+1)(r+2)(r+3)}
$$ \& B1 \& 1 \& Shown

\hline \& $$
\begin{aligned}
& \sum \frac{2}{(r+1)(r+2)(r+3)}= \\
& \quad \sum \frac{1}{(r+1)(r+2)}-\sum \frac{1}{(r+1)(r+2)} \\
& =\left\{\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{(n+1)(n+2)}\right\}-
\end{aligned}
$$ \& M1 \& \& Attempt at difference of two series

\hline \& $$
\left\{\frac{1}{3.4}+\ldots+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+2)(n+3)}\right\}
$$ \& A1 \& \& Correct series identified

\hline \& $$
=\frac{1}{2.3}-\frac{1}{(n+2)(n+3)}
$$ \& \[

\mathrm{m} 1
\] \& \& All terms except $1^{\text {st }}$ and last cancelling;

$$
A=\frac{1}{6}
$$

\hline \& \& \& 4 \& Give B1 if A deduced correctly

\hline (iii) \& $$
S=\frac{1}{6}
$$ \& B1 \checkmark \& 1 \& ft their A

\hline \& Total \& \& 12 \&

\hline \& TOTAL \& \& 80 \&

\hline
\end{tabular}

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Set and published by the Assessment and Qualifications Alliance.

 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

