

GEE

Mathematics \& Statistics B

Unit MBP3

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]| Question number and part | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| $1(\mathrm{a})(\mathrm{i})$
 (ii)
 (iii)
 (b) | $\begin{gathered} \alpha+\beta=-2, \quad \alpha \beta=3 \\ (\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta) \\ \Rightarrow \alpha^{3}+\beta^{3}=10 \\ \frac{\alpha^{3}+\beta^{3}}{(\alpha \beta)^{3}}=\frac{10}{27} \end{gathered}$ $\begin{aligned} & \text { New product of roots }=\frac{1}{(\alpha \beta)^{3}}=\frac{1}{27} \\ & \begin{aligned} & x^{2}-[\text { cand's }(\text { a })(\text { iii) }) x+[\text { cand's product }] \\ & \Rightarrow 27 x^{2}-10 x+1=0 \end{aligned} \end{aligned}$ | $\begin{gathered} \hline \text { B1 B1 } \\ \text { M1 A1 } \\ \text { A1 } \\ \text { M1 A1 } \\ \\ \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$ | 2
 3
 2
 3 | $\begin{aligned} & \text { Or } \quad(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right) \& \\ & \quad \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \\ & \mathbf{a g} \end{aligned}$
 ft Must have integer coefficients and be an equation |
| | Total | | 10 | |
| 2(a)
 (b)
 (c) | \subset - shaped parabola Vertex at O, good sketch, symmetry obvious $x^{2}=8 y$ or equivalent Translation; by vector $\left[\begin{array}{l}2 \\ 0\end{array}\right]$ | $\begin{array}{\|c} \hline \text { M1 } \\ \text { A1 } \\ \\ \text { M1 A1 } \\ \\ \text { M1 A1 } \end{array}$ | | Essentially all correct
 M1 for general idea
 sc: B1 for correct description without "translation" |
| | Total | | 6 | |
| 3(a)
 (b) | $a=4 \text { and } b=1$
 Asymptotes $x=1, y=2, y=-2$ Graph: Correct for $y>0$ Symmetry in x-axis All correct | $\begin{array}{\|c} \hline \text { B1 B1 } \\ \\ \text { B1 B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$ | 2 5 | One correct; second correct
 Or B1 for each correct region
 E.g. $4 / 5$ for all correct graph but with asymptotes $x=1, y= \pm 4$ |
| | Total | | 7 | |

Question number and part	Solution	Marks	Total	Comments
4(a)	$24-3 k$	B1	1	
(b)	Det $=0 \Rightarrow k=8$	$\begin{aligned} & \text { M1 } \checkmark \\ & \text { A1 } \checkmark \end{aligned}$	2	
(c)(i)	Area $=0$	B1 \checkmark	1	ft $5 \times$ cand's Det with $k=8$
(ii)	$\begin{aligned} \text { Det } & =3 \quad \text { and } / \text { or } \end{aligned} \begin{gathered} -3 \\ \\ \quad \Rightarrow k=7 \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \\ \text { A1 } \\ \hline \end{gathered}$	3	ft cand's " $24-3 k=3$ " cao
	Total		7	
5(a)	$\ln Q=\ln a+b \ln x$	B1	1	
(b)(i)	$\begin{array}{lrrrrr} \ln x: & -0.92 & -0.69 & -0.51 & -0.36 & -0.22 \\ \ln Q: & 0.54 & 1.11 & 1.56 & 1.94 & 2.28 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		Most correct At most one error
	Points plotted on graph provided	B1	3	Reasonably accurately
(ii)	"Good" line of best fit drawn	B1	1	
(c)(i)	$\ln Q=1.29-1.30 \Rightarrow Q \approx 3.6-3.7$	M1 A1	2	
(ii)	$\begin{aligned} & \hline \text { Method for finding gradient: } b=2.5 \\ & \text { Reading off } y \text {-intercept: } \ln a \approx 2.8 \\ & \qquad a=16-17 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { M1 A1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	4	± 0.1 Give M marks for simultaneous equations approach
	Total		11	
6(a)(i)	$-5+12 \mathrm{i}$	M1 A1	2	
(ii)	Squaring their answer to (i) or use of the binomial theorem: - 119-120 i	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$	2	ft
(b)(i)	Subst ${ }^{\text {g }}$. their $z^{4}, z=2+3$ i into equation $(-119-120 \mathrm{i})+40(2+3 \mathrm{i})+k=0$	M1		
	$\Rightarrow k=39$	A1	2	cao
(ii)	$2-3 i$	B1	1	Or $z=-1,-3$
	Total		7	
7(a)(i)	$8 \quad 6 \quad 4 \quad 2$	B1		
	$\begin{array}{lcccc}6 & 8 & 10 & 12\end{array}$	B1		One for each correct row/column
	$\begin{array}{llll}4 & 10 & 2 & 8\end{array}$	B1		
	$2 \begin{array}{llll}2 & 12 & 8 & 4\end{array}$	B1	4	
(ii)	Only elements of S appear in the Cayley table	E1	1	Or equivalent statements
(iii)	The identity is 8	B1	1	
(iv)	$12^{-1}=10$	B1	1	
(b)	$x \equiv 6(\bmod 14) \quad$ but allow $x=6$	B1	1	
(c)	$x=4$ and $x=10$	B1 B1	2	sc B1 for $x^{2} \equiv 2(\bmod 14)$ only
	Total		10	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

