

Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBP3

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and wales 3644723 MAANegtheelipapers (AQA) is a company limi

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
с		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question	Solution	Marks	Total	Comments
number				
and part				
1(a)(i)	$\alpha + \beta = -2$, $\alpha\beta = 3$	B1 B1	2	
(ii)	$(\alpha+\beta)^3-3 \alpha\beta(\alpha+\beta)$	M1 A1		Or $(\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) \&$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$
	$\Rightarrow \alpha^3 + \beta^3 = 10$	A1	3	ag ag
(iii)	$\frac{\alpha^3 + \beta^3}{(\alpha\beta)^3} = \frac{10}{27}$	M1 A1	2	
(b)	New product of roots = $\frac{1}{(\alpha\beta)^3} = \frac{1}{27}$	B1		
	x^{2} - [cand's (a) (iii)] x + [cand's product] $\Rightarrow 27x^{2} - 10x + 1 = 0$	M1 A1√	3	ft Must have integer coefficients and be an equation
	Total		10	
2(a)	\subset - shaped parabola Vertex at <i>O</i> , good sketch, symmetry obvious	M1 A1	2	Essentially all correct
(b)	$x^2 = 8 y$ or equivalent	M1 A1	2	M1 for general idea
(c)	Translation; by vector $\begin{bmatrix} 2\\ 0 \end{bmatrix}$	M1 A1	2	sc : B1 for correct description without "translation"
	Total		6	
3(a)	a = 4 and $b = 1$	B1 B1	2	
(b)	Asymptotes $x = 1$, $y = 2$, $y = -2$ Graph: Correct for $y > 0$ Symmetry in <i>x</i> -axis	B1 B1 B1 B1		One correct; second correct
	All correct	B1	5	Or B1 for each correct region
				E.g. 4/5 for all correct graph but with asymptotes $x = 1, y = \pm 4$
	Total		7	
	Total	I	,	l

Question	Solution	Marks	Total	Comments
number				
and part	24 21	D 1	1	
4(a)	24 - 3k	B1	1	
(b)	$Det = 0 \implies k = 8$	M1√ A1√	2	ft (a)
(c)(i)	Area = 0	B 1√	1	ft $5 \times \text{cand's Det with } k = 8$
(ii)	Det = 3 and / or -3 $\Rightarrow k = 7$ $\Rightarrow k = 9$	M1 A1√ A1	3	ft cand's " $24 - 3k = 3$ " cao
	Total		7	
5(a)	$\ln Q = \ln a + b \ln x$	B1	1	
(b)(i)	ln x: -0.92 -0.69 -0.51 -0.36 -0.22 ln Q: 0.54 1.11 1.56 1.94 2.28 Points plotted on graph provided	B1 B1 B1	3	Most correct At most one error Reasonably accurately
(ii)	"Good" line of best fit drawn	B1	1	
(c)(i)	$\ln Q = 1.29 - 1.30 \implies Q \approx 3.6 - 3.7$	M1 A1	2	
(ii)	Method for finding gradient: $b = 2.5$ Reading off <i>y</i> -intercept: $\ln a \approx 2.8$	M1 A1 M1		± 0.1 Give M marks for simultaneous equations approach
	a = 16 - 17	A1	4	upprout.
	Total		11	
6(a)(i)	- 5 + 12 i	M1 A1	2	
(ii)	Squaring their answer to (i) or use of the binomial theorem: $-119 - 120$ i	M1 A1√	2	ft
(b)(i)	Subst ^g . their z^4 , $z = 2 + 3$ i into equation (-119 - 120 i) + 40(2 + 3 i) + $k = 0$	M1	2	
	$\Rightarrow k = 39$	A1	2	cao
(ii)	2 – 3 i	B1	1	Or $z = -1, -3$
(11)	Total		7	··· · · · · · · · · · · · · · · · · ·
7(a)(i)	8 6 4 2	B1		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1 B1	4	One for each correct row/column
(ii)	4 10 2 8	B1	4 1	One for each correct row/column Or equivalent statements
(ii) (iii)	$\begin{array}{ccccccc} 4 & 10 & 2 & 8 \\ 2 & 12 & 8 & 4 \end{array}$ Only elements of <i>S</i> appear in the	B1 B1		
	 4 10 2 8 2 12 8 4 Only elements of <i>S</i> appear in the Cayley table 	B1 B1 E1	1	
(iii)	 4 10 2 8 2 12 8 4 Only elements of <i>S</i> appear in the Cayley table The identity is 8 	B1 B1 E1 B1	1 1	

Question	Solution	Marks	Total	Comments
number				
and part 8(a)	$r_{\rm max} = 2$ when $\theta = \frac{1}{4} \pi$ and $\theta = -\frac{3}{4} \pi$	B1 B1		
0(u)	$T_{\text{max}} = 2$ when $\theta = 7_4 \pi$ and $\theta = -7_4 \pi$	B1 B1	3	
(b)	$\sin 2\theta = -1 \implies 2\theta = \frac{3}{2}\pi, \dots$	M1 A1		
	giving $\theta = \frac{3}{4}\pi$, $\theta = -\frac{1}{4}\pi$	A1 A1	4	Penalise degrees max. once; ignore correct out-of-range answers
(c)	Use of $r = \sqrt{x^2 + y^2}$	B1		
	Use of either $\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{x}{r}$	M1		
	$\sqrt{x^2 + y^2} = 1 + \frac{2xy}{x^2 + y^2}$	A1	3	Any correct form at earliest stage
	Total		10	
9(a)(i)	Attempt at $f(r + 1) - f(r)$	M1		
	= r(r+1)(r+2)(r+3) - (r-1)r(r+1)(r+2)			
	$= r(r+1)(r+2) \{ r+3-r+1 \}$			
	=4r(r+1)(r+2)	A1	2	i.e $k = 4$
(ii)	$\sum r(r+1)(r+2) = \frac{1}{4} \sum \left\{ f(r+1) - f(r) \right\}$	M1√		ft k
	$= \frac{1}{4} \{ f(n+1) - f(1) \}$	m1		
	$= \frac{1}{4}n(n+1)(n+2)(n+3)$	A1	3	
(b)	For $n = 1$, LHS = RHS = $\frac{1}{3}$	B1		
	Adding next term to at least the RHS	M1		
	Correct $(k + 1)^{\text{th}}$ term used:	B1		
	$\frac{2}{(k+1)(k+2)(k+3)}$			
	RHS = $\frac{1}{2} - \left\{ \frac{(k+3) - 2}{(k+1)(k+2)(k+3)} \right\}$	M1		With correct sign
	$=\frac{1}{2} - \frac{1}{(k+2)(k+3)}$	A1		
	Clear induction hypothesis somewhere	E1	6	Or full explanation at end
(c)	$S = \frac{1}{2}$	B1	1	
	Total		12	
	TOTAL		80	