GCE 2004 November Series

Mark Scheme

Mathematics and Statistics B MBP2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

www.theallpapers.com

Key to Mark Scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
$\sqrt{\mathbf{or}}$ ft		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
<i>-x</i> ee		deduct <i>x</i> marks for each error
PI		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

deducted x marks for mis-copy
deducted x marks for mis-read
ignored subsequent working
gave benefit of doubt
work replaced by candidate
formulae book

Application of Mark Scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

www.theallpapers.com

Question	Solution	Marks	Total	Comments
Number and Part				
1(a)	Arc length = $r\theta$	M1		
	$4 = 10\theta \Longrightarrow \theta = 0.4$	A1	2	
(b)	Area of sector = $\frac{1}{2}r^2\theta$	M1		
	$= 50 \ \theta = 20 \ \mathrm{cm}^2$	A1√	2	ft on candidate's θ
	Total		4	Condone missing/wrong units
2(a)(i)	_ 576		4	
2(a)(1)	e.g. $r = \frac{-570}{720} = -0.8$	B1	1	ag Be convinced
(ii)	When $r = -0.8$, $-1 < r < 1$ so series is			
	convergent	E1	1	oe
(b)	n th term = $a r^{n-1}$	M1		condone <i>n</i> th term = ar^n
	$= 720(-0.8)^{n-1}$	A1	2	
(c)	$S_{15} = \frac{a(1-r^{15})}{1}$	M1		
	1-r			
	$=\frac{720(1-(-0.8)^{13})}{1-(-0.8)}=414(.07)$	A1	2	ag Need to see some evaluation or a more
(6)				
(u)	$\frac{a}{1-r} =$	M1		
	$-\frac{720}{2} = 400$. 1		
	$1 - (-0.8)^{-1000}$	Al	2	
	Total		8	
3(a)	p(4) = 64 - 32 - 44 + 12	M1	_	p(4) attempted
	$p(4) = 0 \Rightarrow (x - 4)$ is a factor of $p(x)$	A1	2	ag Must have conclusion or equivalent earlier statement
(b)	$(x, 4)[x^2, 3]$			
	$(x - 4)[x \dots - 5]$	M1		coeff of x^3 or const correct
	$(r-4)[r^2+2r-3]$	A 1		or $p(1)$ or $p(-3)$ considered
	(x +)[x + 2x + 5]	AI		
	(x - 4) [x - 1] [x + 3]	m1		valid method to 3rd factor
	$p(x) \equiv (x-4) (x-1)(x+3)$	A1	4	
(c)	$r \rightarrow n^2$			
(0)	$x \rightarrow y$			
	$(y^2 - 4) (y^2 - 1)(y^2 + 3) = 0$	M1		using $x = y^2$
	$v^2 = 4$ $\rightarrow v = +2$			
	$y = -\tau, \implies y = \pm 2$ $y^2 = 1: \implies y = \pm 1$			ft on (b) provided equivalent demands.
	$y = 1, \rightarrow y = \pm 1$ $y^2 = -3: \rightarrow \text{no solution}$	A2,1√	3	A1ft for any three of five 'correct'.
	$y = -3, \rightarrow 10$ solution	,		Accept ignoring negative value of y^2
				without statement
	Total		9	

Mathematics and Statistics B Pure 2 MBP2 November 2004

MBP2 (cont)

Question Number	Solution	Marks	Total	Comments
and Part				
4	$\sin\left(x + \frac{\pi}{3}\right) = -0.3$ $\sin^{-1}(0.3) = 0.304\{69\}$	M1		Taking $\sin^{-1}(0.3)$; award if either 0.304
				or – 0.304 or 17.4{5} or – 17.4{5} seen
	$\Rightarrow \{X\} = \pi + "0.304\{69\}"$	m1		Angle in 3rd quadrant. Accept degrees; condone mix.
	or {X} = 2π - "0.304{69}" x + $\frac{\pi}{2}$ used for X	ml		Angle in 4th quadrant. Accept degrees; condone mix.
	3	m1		Dep on M and at least one of the two m's
	$x = 2.39908 \dots = 2.40$	A1		Accept awrt in both answers. Deduct a max of 1 mark from any
	or $x = 4.931295 \dots = 4.93$	A1	6	A marks if final answer(s) are in degrees. {137.457; 282.54}
				Accept 0.764π and 1.57π . (Both 2.39 & 4.94 can score A1)
	Total		6	NB eg M1m1m0m1A1A0 is possible
	<i>y</i>			
5(a)		M1		Single V-shaped graph
		A1	2	Vertex at origin, and 'roughly' symmetrical
(b)				
		B2,1	2	B1 each branch
(c)(i)	$\frac{\frac{1}{1}}{\frac{1}{4}} - 4 = 4 - 4 = 0$	B1	1	convincing verification
(ii)	$\left(\frac{1}{2},4\right)$ and $\left(-\frac{1}{2},4\right)$	B2,1	2	B1 for two of the four coordinates correct
	Total		7	

www.theallpapers.com

MBP2 (cont)

Question	Solution	Marks	Total	Comments
Number and Part				
6(a)(i)	$f'(x) = 4e^{4x} + x^{-2}$	B1 M1 A1	3	For x^{-2} oe For $k e^{4x}$, $k \neq 0$ For 4 e^{4x}
(ii)	$e^{4x} > 0$ and $x^{-2} > 0$ {for $x > 0$ } so f'(x) > 0 \Rightarrow f is an increasing fn.	M1 A1	2	Award max. of M1A0 if insufficient detail
(b)	$\int \left(e^{4x} - \frac{1}{x} \right) dx = \frac{1}{4} e^{4x} - \ln x \ \{+c\}$	M1 A1		One term correct Both terms correct
	$\int_{1}^{2} \left(e^{4x} - \frac{1}{x} \right) dx = \left[\frac{1}{4} e^{4x} - \ln x \right]_{1}^{2}$			
	$=\left(\frac{1}{4}e^{8}-\ln 2\right)-\left(\frac{1}{4}e^{4}-\ln 1\right)$	M1		F(2) - F(1)
	$=\frac{e^4(e^4-1)}{4}-\ln 2$	A1	4	ag (must be exact throughout)
(c)	$e^{4x} - \frac{1}{x} = 7 - \frac{1}{x} \Longrightarrow e^{4x} = 7$	M1		To $e^{ax} = b$ stage
	$\Rightarrow 4x = \ln 7$	m1		exponential to ln
	$\Rightarrow x = \frac{1}{4} \ln 7$	A1	3	Accept any equivalent exact form
	Total		12	

MBP2 (cont)

Advanced Subsidiary – Mathematics and Statistics E

Question	Solution	Marks	Total	Comments
Number				
7(a)(i)	$\frac{dy}{dt} = \frac{2}{2} - 4$	M1 A1	2	Clear differentiation
	dx x		-	
(ii)	When $x = 2$, $\frac{dy}{dx} = \frac{2}{2} - 4 = -3$	A1√	1	Only ft if no log term
(b)	At st. pt., $y'(x) = 0 \Rightarrow \frac{2}{x} - 4 = 0$	M1		
	$\Rightarrow x = \frac{1}{2}$	A1	2	ag Be convinced; cso
(c)(i)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{2}{x^2}$	B1√	1	
(ii)	$x^2 > 0 \Rightarrow y''(x) < 0 $ {alt. $y''\left(\frac{1}{2}\right) < 0$ }	E1√		ft on non-constant (c)(i)
	$\Rightarrow P$ is a maximum	E1√	2	ft on candidate's sign of y''
(d)(i)	$4 = \frac{2}{x} - 4$	M1		
	$\Rightarrow \frac{2}{x} = 8 \Rightarrow x = \frac{1}{4}$	A1	2	ag Be convinced
(ii)	$Q\left(\frac{1}{4}, 2\ln\frac{1}{4}-1\right); P\left(\frac{1}{2}, 2\ln\frac{1}{2}-2\right)$	M1		Finding <i>y</i> -coordinates; ln's involved or correct numerical values
	Grad of $PQ = \frac{\left(2\ln\frac{1}{2} - 2\right) - \left(2\ln\frac{1}{4} - 1\right)}{\frac{1}{2} - \frac{1}{4}}$	m1		Finding gradient
	$= 8 \ln 2 - 4$	m1 A1	4	Using log law to reach ln k Must be in given form Accept $a = 8, b = -4$
	Total		14	
	TOTAL		60	