

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBP2 Pure 2

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

Mmark is formethodmmark is dependent on one or more M marks and is formethodAmark is dependent on M or m marks and is foraccuracyBmark is independent of M or m marks and is foraccuracyEmark is forexplanation $\sqrt{or ft or F}$ follow through from p incorrect result	revious
Amark is dependent on M or m marks and is for mark is independent of M or m marks and is for mark is foraccuracy accuracyBmark is independent of M or m marks and is for mark is foraccuracy explanation \checkmark or ft or Ffollow through from p	revious
Bmark is independent of M or m marks and is for mark is foraccuracy explanation \mathbf{F} mark is forexplanation $\sqrt{\mathbf{or} \ \mathbf{ft} \ \mathbf{or} \ \mathbf{F}}$ follow through from p	revious
Emark is forexplanation $\sqrt{\mathbf{or} \mathbf{ft} \mathbf{or} \mathbf{F}}$ follow through from p	revious
$\sqrt{\mathbf{or} \mathbf{ft} \mathbf{or} \mathbf{F}}$ follow through from p	vrevious
	orevious
incorrect result	
cao correct answer only	
cso correct solution only	
awfw anything which falls v	vithin
awrt anything which round	s to
acf any correct form	
ag answer given	
sc special case	
oe or equivalent	
sf significant figure(s)	
dp decimal place(s)	
A2,1 2 or 1 (or 0) accuracy	marks
-x ee deduct x marks for each	ch error
pi possibly implied	
sca substantially correct a	nnroach

Abbreviations used in Marking

MC - x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

No method shown:	
Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Q	Solution	Marks	Total	Comments
1(a)(i)	0.5	B1	1	
(ii)	When $r = 0.5$, $-1 < r < 1$ so series is convergent	E1	1	oe
(b)	$S_{\infty} = \frac{a}{1-r}$			
	1 /	M1 A1√	2	ft only of value of r such that $ r < 1$
(c)	= 16 24 th term = ar^{24-1}		2	Condone ar^{24}
(()	22	M1		Condone <i>ar</i>
	$\dots = 8 \times \left(\frac{1}{2}\right)^{23}$	A1		oe Accept 9.54×10^{-7} or better
	$ = 2^{-20}$	A1	3	(accept $k = -20$ if clear)
	Total		7	
2(a)(i)	Total – 1, 1 and 4	B2,1,0	7 2	
(ii)	<i>У</i> ↑			
	4	B1		<u>Cubic Shape</u> : one minimum and one max to left of min. (Condone max on or to the
				right of the y-axis)
		B1√`	2	Cubic outting r axis at three ft values
		DIV	2	Cubic cutting <i>x</i> -axis at three ft values from (i) and cutting <i>y</i> -axis at 4.
	7			
(iii)	x > 4	B1√`		If incorrect, ft on cubic graph with three
(111)	-1 < x < 1	B1	2	points of intersection with <i>x</i> -axis.
				Deduct maximum of 1 mark for use of
(b)(i)	$f(x) = (x^2 - 1)(x - 4) = x^3 - 4x^2 - x + 4$	M1		non-strict inequalities Attempts to multiply the remaining
	(x) $(x + 1)(x + 1) = x + 1x + 1$			'bracket' by product of any two brackets
(ii)	$\mathcal{E}(x) = x^3 + 4x^2 + x + 4$	A1	2	Accept $p = -4$, $q = -1$
(11)	$\frac{f(x)}{x} = \frac{x^3 - 4x^2 - x + 4}{x}$			
	$\dots = x^2 - 4x - 1 + \frac{4}{-1}$			M1 (on a tarma fit a arma at)
		M1A1√		M1 (one term ft correct)
	$\int \frac{f(x)}{x} dx = \frac{x^3}{3} - \frac{4x^2}{2} - x + 4\ln x + c$	A1		$\frac{x^3}{3}$
	$\int \frac{1}{x} = \frac{1}{3} + \frac{1}{2} = \frac{1}{2}$	AI		3
		A1		4ln <i>x</i>
				pr^2
		A1√	5	$\frac{px^2}{2} + qx$
				(Condone absence of '+c')
(iii)	$\int_{1}^{2} \dots = \left(\frac{8}{3} - 8 - 2 + 4\ln 2\right) - \left(\frac{1}{3} - 2 - 1\right)$	M1		F(2) - F(1)
	$\int_{1}^{1} \left(3 \right)^{2} \left(3 \right$	1 v1 1		F(2) - F(1)
	$\dots = \frac{7}{3} - 7 + 4\ln 2 = 4\ln 2 - \frac{14}{3}$	A1	2	cso ag
	3 3 Total		15	
	I Utal		10	

Mathematics and Statistics B Pure 2 MBP2 June 2005

MBP2 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right)^2 - 3\left(\frac{1}{2}\right) + 2$	M1		Use of $p\left(\frac{1}{2}\right)$
	$= 0 \Rightarrow (2x - 1)$ is a factor of $p(x)$	A1	2	ag Must have the conclusion.
(b)	p(-1) = -2 - 3 + 3 + 2 = 0	B1	1	
(c)	(x + 1) is a factor of $p(x)$	B1		Award at any stage
	$p(x) \equiv (x+1) (2x-1) [x \dots -2]$	M1		Valid attempt at 3^{rd} factor/complete method. [coeff of x^3 correct or const
	$p(x) \equiv (x+1) (2x-1) (x-2)$	A1	3	correct or use of p(2)]
(d)	$x \rightarrow \ln y \Rightarrow$			
	$(\ln y + 1)(2\ln y - 1)(\ln y - 2)=0$	M1		Using $x = \ln y$
	$\Rightarrow \ln y = -1; \ \ln y = \frac{1}{2}; \ \ln y = 2$ $\Rightarrow y = e^{-1}; \ y = e^{0.5}; \ y = e^{2}.$	m1 A2,1√	4	for ln $y = k$ to $y = e^k$. ft on cnd's 3 rd factor (<i>x</i> - <i>a</i>) only if $a \neq 0$, $a \neq -1$, $a \neq 0.5$ (A1ft for one of the three solutions). Condone $\frac{1}{e}$ or \sqrt{e} forms NMS Mark as B4,0 provided answer to part (c) is correct.
	Total		10	

MBP2 (cont)

Q	Solution	Marks	Total	Comments
4(a)	{Area of sector =} $\frac{1}{2}r^2\theta$	M1		For $\frac{1}{2}r^2\theta$ oe
	$16 = \frac{1}{2}x^2\theta \Longrightarrow \theta = \frac{32}{x^2}$	A1	2	
(b)	{Arc=} $r\theta$	M1		Accept seen in any part
	Perimeter $P = 2x + Arc$	M1		
	$P = 2x + x\theta = 2x + \frac{32}{x}$	A1	3	cso ag
(c)(i)	$\frac{dP}{dx} = 2 - 32x^{-2}$ $\frac{dP}{dx} = 0 \Longrightarrow 2 = 32x^{-2}$	B1 B1	2	B1 for each term
(ii)	$\frac{\mathrm{d}P}{\mathrm{d}x} = 0 \Longrightarrow 2 = 32x^{-2}$	M1		Put $P'(x)=0$ and then to stage $ax^n=k$
	$\Rightarrow x^2 = 16 \Rightarrow x = 4$	A1	2	Condone ± 4
(d)(i)	$\frac{\mathrm{d}^2 P}{\mathrm{d}x^2} = 64x^{-3}$	B1√	1	Only ft on a numerical/sign slip
(ii)	When $x = 4$, $\frac{d^2 P}{dx^2} > 0$	M1		Considers sign of $\frac{d^2 P}{dx^2}$ or value of $\frac{d^2 P}{dx^2}$
	\Rightarrow Stationary value is a minimum	A1√	2	at the stationary point ft on c and 's $P''(x)$, no further errors seen
	Total		12	
5(a)(i)	$\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$	B1	1	Accept any correct exact form
(ii)	$\cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$	B1	1	Accept any correct exact form
(b)(i)	$\cos\theta = \pm \frac{\sqrt{3}}{2}; \pm \frac{1}{\sqrt{2}}$	B2,1	2	Any correct <u>exact</u> form (B1 for two of the four correct)
(ii)	$\theta = \frac{\pi}{6}; \frac{\pi}{4}$, from correct positive $\cos\theta$	B1 B1		Deduct maximum of 1 mark for answers in degrees or decimals (3sf or better).
	$\theta = \frac{5\pi}{6}; \frac{3\pi}{4}$ from correct negative $\cos\theta$	B1 B1	4	Ignore answers outside the given interval.
	Total		8	

MBP2	(cont)
------	--------

Q	Solution	Marks	Total	Comments
6(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 18 \ \mathrm{e}^{2x}$	M1 A1	2	For $k e^{2x}$, $(k \neq 9, -9 \text{ or } 0)$ cao
	dx		2	cao
(b)(i)	$\ln y = \ln(9 \ \mathrm{e}^{2x})$	M1		oe Taking ln's of both sides
	$\dots = \ln 9 + \ln(e^{2x})$	ml		oe Law of logs used correctly
	$\ln y = \ln 9 + 2x$	A1		
	$x = \frac{1}{2}\ln y - \frac{1}{2}\ln 9$			
	$x = \frac{1}{2} \ln y - \ln 3 \qquad (k=0.5)$	A1	4	cso
(ii)	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{2y}$	B1√	1	cso ft on k : Accept $\frac{dx}{dy} = \frac{k}{y}$
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}y} = 18 \ \mathrm{e}^{2x} \times \frac{1}{2(9 \ \mathrm{e}^{2x})} = 1$	B1	1	ag Must be convinced
	Total		8	
			(0	
	TOTAL		60	