GCE 2004 June Series

Mark Scheme

Mathematics and Statistics B *MBP2*

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors
COPYRIGHT AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered

within the centre.

Set and published by the Assessment and Qualifications Alliance.

charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 $6\mathrm{EX}$.

Dr Michael Cresswell Director General

Key to Mark Scheme

3.4	1 ' C	.1 1
M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
–x ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC-x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

No	met	hod	sh	own:
----	-----	-----	----	------

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Mathematics and Statistics B Pure 2 MBP2 June 2004

Question number	Solution	Marks	Total marks	Comments
and Part				
1	$\int \frac{1}{x} \mathrm{d}x = \ln x \dots$	B1		cao
	$\int \frac{1}{x} dx = \ln x \dots$ $\int_{2}^{6} \frac{1}{x} dx = \ln 6 - \ln 2$	M1		Dealing with limits correctly; $F(6)-F(2)$ [B0M1 possible following an attempt to integrate $\frac{1}{x}$.]
	= ln 3	A1	3	cso (use ISW for dec following ln3)
	Total		3	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2(a)	$ar = 16;$ $a r^5 = 1$ $\Rightarrow 16r^4 = 1$	B1 M1		For either oe Elimination of <i>a</i> oe
	$r^4 = \frac{1}{16} \implies r = -\frac{1}{2}$	A1		ag cso Full valid completion sc Clear explicit verification give maximum B2 out of 3. (accept if -8, 4, -2
	or $r = \frac{1}{2}$	B1	4	seen)
` ′	a = -32	B1		
	$\frac{a}{1-r} = \frac{a}{1-\left(-\frac{1}{2}\right)}$	M1		Accept $\frac{a}{1-r}$ quoted
	$S_{\infty} = \frac{-64}{3} \ (= -21.3 \text{ to 3sf})$	A1√	3	ft on candidate's value for a , ie $\frac{2}{3}a$
				sc cand uses $r = 0.5$, gives $a = 32$ and sum to infinity = 64 (max. B0M1A1)
	Total		7	
3(a)	−2 and 1	B1B1	2	
(b)	<i>x</i> > 1	B1√	1	ft on $x >$ larger value in (a) if not $x > 1$
(c)	$x \ge 1$	B1√		ft on $x \ge$ larger value in (a) if not $x \ge 1$
	x = -2	B1√	2	ft on $x = \text{smaller value in (a) if not } x = -2$
	Total		5	

Question	Solution	Marks	Total	Comments
Number and Part			marks	
4(a)	Angle 60° or $\frac{\pi}{3}$ radians or arc = $r\theta$	B1		Seen in part (a)
	arc : radius = $\frac{60}{360} 2\pi r$: $r = \pi$: 3	B1	2	ag cso
(b)	area of equilateral $\Delta = \frac{1}{2}r^2 \sin 60^\circ$	M1		$\frac{1}{2}r^2\sin\theta$ oe stated
	$=\frac{1}{2}r^2\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{4}r^2$	A1	2	ag cso
(c)	Area of sector = $\frac{1}{6}\pi r^2$	В1		
	$\frac{1}{6}\pi r^2 - \frac{\sqrt{3}}{4}r^2 = 10$	M1		Accept "area of sector $-\frac{\sqrt{3}}{4}r^2 = 10$ "
	$r^2 = \frac{120}{2\pi - 3\sqrt{3}} = 110.3922$			
	r = 10.506 = 10.5 to 3sf	A1	3	awrt 10.5
	Total		7	

Question Number	Solution	Marks	Total marks	Comments
and Part			11141115	
5(a)(i)	$\frac{1}{4}(2) < \ln 2$ since $0.5 < 0.693$	B1	1	Be convinced
(ii)	$\frac{1}{4}(10) > \ln 10$ since 2.5 > 2.30	B1	1	Be convinced
(iii)		B2,1	2	B2 graphs correct with detail. (B1 for full correct shape of $y = \ln x$; or for correct line and correct part graph of $y = \ln x$ in first quadrant from marked point $(1,0)$)
(iv)	2 roots	В1	1	
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x} - \frac{1}{4}$	M1		One term correct
(-)(-)	dx x 4	A1	2	Accept other correct forms
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{1}{x^2}$	A 1√	1	Only ft if $y'(x)$ has x^{-1} term
(iii)	At st. pt $y'(x) = 0 \Rightarrow \frac{1}{x} - \frac{1}{4} = 0$	M1		Putting their $y'(x) = 0$
	$\Rightarrow x = 4$	A1	2	
(iv)	$x^2 > 0 \Rightarrow y''(x) < 0 \text{ {alt. } } y''(4) < 0$ }	M1		Finding sign of 2^{nd} derivative, or consideration of sign of $y'(x)$ either side of st pt or relevant use of (a) oe
	⇒ st pt is a maximum	B1	2	Stated
	Total		12	

Question Number	Solution	Marks	Total marks	Comments
and Part			marks	
6(a)	$(x + 2)$ is a factor of $p(x) \Rightarrow p(-2)=0$	M1		Use of p(-2) or if division by $x + 2$, correctly reaches remainder $4k - 28$
				$\{Q(x)=6x^2+(k-12)x-2k+15\}$
				oe comparing coefficients
	$-48 + 4k + 18 + 2 = 0 \Rightarrow k = 7$	A1	2	ag cso
(b)	$p\left(\frac{1}{2}\right) = 6\left(\frac{1}{2}\right)^3 + k\left(\frac{1}{2}\right)^2 - 9\left(\frac{1}{2}\right) + 2$	M1		Use of $p\left(\frac{1}{2}\right)$. Accept $p\left(\frac{1}{2}\right) = 0$ stated
	$= 0 \Rightarrow (2x - 1)$ is a factor of $p(x)$	A1	2	ag Must have the conclusion
(c)	(x+2)(2x-1)[3x1]	M1		Valid attempt at 3rd factor (coeff of x^3 or const correct)
	$p(x) \equiv (x+2) (2x-1) (3x-1)$	A1	2	(coeff of a of const correct)
(d)	$x \to \sin\theta \Rightarrow$			
	$(\sin\theta + 2)(2\sin\theta - 1)(3\sin\theta - 1) = 0$	M1		Using $x = \sin \theta$
	$\Rightarrow \sin \theta = -2; \Rightarrow \text{no solution}$	B1√		PI
	$\sin\theta = \frac{1}{2}; \implies \theta = \frac{\pi}{6}$	A1		Accept 0.523 or 0.524 or better
	$\theta = \frac{5\pi}{6} = 2.62 \text{ (3 sf)}$	A1√		ft on π – " $\frac{\pi}{6}$ " accept 3sf or better
	$\sin\theta = \frac{1}{3}; \Rightarrow \theta = 0.339(8)$	A1√		ft on cand's 3rd factor only if $ \sin \theta \le 1$
	$\theta = 2.80(17)$	A1√	6	ft on π -"0.339(8)"
				Accept 2sf if 3rd sf is 0. Accept multiples of π .
				Ignore values outside the given interval. If answers are left in degrees deduct a
				maximum of 1 mark from A marks given.
	Total		12	
L	Totai			

Question Number	Solution	Marks	Total marks	Comments
and Part			11101110	
7(a)	When $x = 0$, $y = 7$	B1	1	Accept 7 {seen at A on a sketch}
(b)	At $B, y = 0 \implies e^{3x} = 8$	M1		Reaching $e^{3x} = \pm 8$, PI by $x = 0.69(31)$
	$\Rightarrow x = \frac{1}{3} \ln 8 (= \ln 2)$	A1	2	Accept any correct exact form
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3 \mathrm{e}^{3x}$	M1		For ke^{3x} ($k = \pm 3$ or $\pm \frac{1}{3}$). Condone any
				inclusion of '8'
	Gradient at $B = y'(\ln 2)$	A 1	2	a a a a (word ha are at through out)
	=-3(8)=-24	A1	2	ag cso (must be exact throughout)
(d)(i)	$\int (8 - e^{3x}) dx = 8x - \frac{1}{3} e^{3x} + c$	M1		For $8x - ke^{3x}$; $k = \frac{1}{3}$, 1 or 3 only
	In ?	A1	2	cao {condone absence of $+ c$ }
(ii)	$\int_{0}^{\ln 2} (8 - e^{3x}) dx = \left[8x - \frac{1}{3} e^{3x} \right]_{0}^{\ln 2}$ $= \left(8 \ln 2 - \frac{1}{3} e^{3 \ln 2} \right) - \left(0 - \frac{1}{3} e^{0} \right)$			
	$= \left(8 \ln 2 - \frac{1}{3} e^{3 \ln 2}\right) - \left(0 - \frac{1}{3} e^{0}\right)$	M1		Dealing correctly with limits; F(b)–F(0)
	$= 8 \ln 2 - \frac{8}{3} + \frac{1}{3}$	A1		Condone awrt 3.21
	$=8\ln 2-\frac{7}{3}$	A1	3	ag cso (must be exact throughout)
(e)(i)	$y \uparrow$ A	B1		'Two-branch' graph covering 1st two quadrants only, with one intersection point with x-axis and left of B similar to given left portion of curve.
	$O \mid B \mid x$	B1	2	Reasonable reflection in the <i>x</i> -axis of that part of the given curve that is below the <i>x</i> -axis.
(ii)	$e^{3x}-8=19$	M1		oe
	$x = \frac{1}{3} \ln 27 (= \ln 3)$	A1	2	Accept any exact form for this single value of <i>x</i> .
	Total		14	
	TOTAL		60	