

Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBP2

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
$$ or ft or ${f F}$		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC-x	deducted x marks for miscopy
MR-x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working zero	marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question number	Solution	Marks	Total marks	Comments
and part				
1	$\int (e^{2x} + 4) dx = \frac{1}{2} e^{2x} + 4x$	M1 A1		Either $0.5 e^{2x}$ or $k e^{2x} + 4x, k \neq 0$
	$\int (e^{2x} + 4) dx = \frac{1}{2} e^{2x} + 4x$ $\int_{0}^{1} (e^{2x} + 4) dx = \frac{1}{2} e^{2} + 4 - \frac{1}{2}$ $= \frac{1}{2} (e^{2} + 7)$	M1		F(1) – F(0)
	$=\frac{1}{2}\left(e^2+7\right)$	A1	4	ag cso
	Total		4	
2(a)(i)	Area of sector $=\frac{1}{2}r^2\theta$	M1		For $\frac{1}{2}r^2\theta$
	$=0.5\times9\theta=4.5\theta~(\mathrm{cm}^2)$	A1	2	
(ii)	Area of triangle = $\frac{1}{2}AB \times AC \sin \theta$	M1		$\frac{1}{2}AB \times AC\sin\theta$
	$\dots = \frac{1}{2} 3 \times 4 \sin \theta = 6 \sin \theta \text{ (cm}^2)$	A1	2	
(b)	{For small θ ,} $\sin \theta \approx \theta$	M1		Stated or used
	Shaded area $\approx 6\theta - 4.5\theta = 1.5\theta \text{ (cm}^2\text{)}$	A1	2	ag cso
	Total		6	
3(a)	14 (m ³)	B1		$\frac{\mathrm{d}V}{\mathrm{d}t} = k\mathrm{e}^{-\frac{t}{12}}$
(b)	$\frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{6}{12}\mathrm{e}^{-\frac{t}{12}}$	M1		isw wrong evaluation Accept equivalent statements ft (only ft if A0)
	$t = 12, V'(t) = -0.5 e^{-1} (= -0.1839)$	A1		
	negative sign ⇒ Volume decreasing	E1√		
(c)	$11 = 8 + 6e^{-\frac{t}{12}}$	M1		Rearrangement or $\ln 3 = \ln 6 + \ln e^{-\frac{t}{12}}$
	$e^{-\frac{t}{12}} = \frac{11 - 8}{6}$	m1		To the form $-\frac{t}{12} = \ln k$
	Total		8	

Question	Solution	Marks	Total	Comments
number and part			marks	
4	$\tan x = -\sqrt{3}$			
·	$\tan^{-1}\sqrt{3} = \frac{\pi}{3}$	M1		Inverse tangent of either $\sqrt{3}$ or $-\sqrt{3}$ attempted; can be implied by eg a correct 2^{nd} or 4^{th} quadrant angle
	$[x] = \pi - \frac{\pi}{3}$	m1		Angle $(\pi - \tan^{-1} \sqrt{3})$ oe in 2^{nd} quadrant accept different forms e.g. degrees, decimals (could be negative)
	$[x] = 2\pi - \frac{\pi}{3}$	m1		Angle $(2\pi - \tan^{-1} \sqrt{3})$ oe in 4 th quadrant accept different forms e.g. degrees, decimals (could be negative if different from principal value)
	$x = \frac{2\pi}{3} \text{ and } x = \frac{5\pi}{3}$	A1	4	cao as the only two solutions in the interval $0 < x < 2\pi$. Ignore 'extras' outside this interval.
				sc MR solving $\tan x = \sqrt{3}$ gets max 2/4
				i.e. 1 st M1 and an A1 for both $\frac{\pi}{3}$ and $\frac{4\pi}{3}$
-()	Total		4	
5(a)	<i>y</i> ↑	M1		V-shape
	4	A1		only in both 1 st and 2 nd quadrants
		A1		vertex at (2,0)
	O 2 x	B1	4	Graph meets <i>y</i> -axis at 4 only
(b)(i)	2x-4=x; or $2x-4=-x$; or $3x^2-16x+16=0$;	M1		M1 for any one of the three oe
	$\Rightarrow x = 4$	A1		(If no method seen give B3 for both correct answers else B1 for one correct
	$x = \frac{4}{3}$	A1	3	answer)
(ii)	$x < \frac{4}{3}; x > 4$	B2,1√	2	ft on (i); penalise non-strict inequality only once
(c)	<i>k</i> = 2	M1A1	2	M1 e.g. (i) translates graph k units vertically (ii) solves $x = 2x - 4 + k$ and $x = -2x + 4 + k$ simultaneously to a single equation in k . $(12 - 3k = 4 + k)$
	Total		11	Vquation in N. (12 3N - 1 1 N)
	Total		11	

Question	Solution	Marks	Total	Comments
number			marks	
and part	2	D.1	- 1	YC 1 1 1 C 11 C 21
6(a)(i)	$2, 2r, 2r^2, 2r^3$	B1	1	If used a look for evidence of $a = 2$ later.
(ii)	$a + ar + ar^{2} = ar^{3} = \frac{15}{4}$	M1		$3.75 = \frac{a(1 - r^4)}{1 - r} \text{ gets M1}$
	either $4(2+2^r+2r^2+2r^3)=15$			
	or $2r^3 + 2r^2 + 2r - 1.75 = 0$ oe	A1		'Quartic' form needs to be simplified
	$8r^3 + 8r^2 + 8r - 7 = 0$	A1	3	ag cso
(b)(i)	p(0.5) = 1 + 2 + 4 - 7	M1		Finds value for $p(0.5)$
	= 0 so $(2r-1)$ is a factor of $p(r)$	A1	2	
(ii)	$(2r-1)(4r^2+7)$	M1		Valid start/end division
	$(2r-1)(4r^2+6r+7)$	A1	2	
(iii)				
	r()			
	Since $6^2 < 4(4)(7)$	M1		Valid consideration of Δ
	$4r^2 + 6r + 7 = 0$ has no real roots			
	$\{\text{so p}(r) = 0 \text{ has only 1 real solution}\}$	A1	2	No numerical errors
	(
(c)	r = 0.5	B1		Can be awarded if seen in (iii)
	$S_{\infty} = \frac{a}{1-r}$;= 4	M1		
	$1-r^{\gamma}$	A1	3	
	Total		13	

Question	Solution	Marks	Total	Comments
number and part			marks	
7(a)(i)	$y'(x) = \frac{3}{4}x^{2} - \frac{6}{x}$ $y'(\frac{2}{3})$ $ = \frac{1}{3} - 9 = -8\frac{2}{3}$	M1	_	M1 at least 1 term correct
	$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	A1	2	
(ii)	$y'(\frac{2}{3})$	M1		attempts to find $y'(\frac{2}{3})$
	$\dots = \frac{1}{3} - 9 = -8\frac{2}{3}$	A1	2	ag cso
(b)(i)	$\frac{3}{4}x^2 - \frac{6}{x} = 0$ $3x^3 = 24$ $x = 2$	M1		puts their $y'(x) = 0$
	$3x^3 = 24$	m1		to a single power of x
	x = 2	A1	3	Must only be the one value
(ii)	$y''(x) = \frac{3}{2}x + \frac{6}{x^2}$	M1 A1√	2	Clear differentiation of $y'(x)$ ft on equivalent forms of $y'(x)$
	- 2			it on equivalent forms of y (x)
(iii)	$y''(2) = 3 + \frac{6}{4} = 4.5$	A1		ag cso
	$\{y''()>0 \text{ so st.pt is a }\}$ minimum	B1	2	
(c)	Gradient of $PQ = \frac{y_Q - y_P}{8 - 4}$	M1		$y_Q - y_P$ numerical
	$\dots = \frac{129 - 6 \ln 8 - (17 - 6 \ln 4)}{8 - 4}$			
	$\dots = \frac{129 - 17 - 6 \ln \frac{8}{4}}{4}$	m1		$\ln 8 - \ln 4 = \ln \frac{8}{4}$
				or both $\ln 4 = 2 \ln 2$ and $\ln 8 = 3 \ln 2$
	= $28 - \frac{3}{2} \ln 2$	A1	3	Accept $a = 28$, $b = -1.5$
	Total		14	
	TOTAL		60	