GCE 2004 November Series

Mark Scheme

Mathematics and Statistics B MBP1

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

www.theallpapers.com

Key to Mark Scheme

Mmark is formethodmmark is dependent on one or more M marks and is formethodAmark is dependent on M or m mark and is foraccuracyBmark is independent of M or m marks and is formethod and accuracyEmark is forexplanation \checkmark or ftfollow through from previous incorrect resultcaocorrect answer only	7.0	1	.1 1
Amark is dependent on M or m mark and is foraccuracyBmark is independent of M or m marks and is formethod and accuracyEmark is forexplanation $\sqrt{or ft}$ follow through from previous incorrect result	Μ	mark is for	method
Bmark is independent of M or m marks and is formethod and accuracyEmark is forexplanation $\sqrt{or ft}$ follow through from previous incorrect result	m		method
Emark is forexplanation $\sqrt{or ft}$ follow through from previous incorrect result	Α	mark is dependent on M or m mark and is for	accuracy
$\sqrt{\text{or ft}}$ follow through from previous incorrect result	B	mark is independent of M or m marks and is for	method and accuracy
incorrect result	Ε	mark is for	explanation
	√or ft		follow through from previous
cao correct answer only			incorrect result
	cao		correct answer only
cso correct solution only	cso		correct solution only
awfw anything which falls within	awfw		anything which falls within
awrt anything which rounds to	awrt		anything which rounds to
acf any correct form	acf		any correct form
ag answer given	ag		answer given
sc special case	sc		special case
oe or equivalent	oe		or equivalent
sf significant figure(s)	sf		significant figure(s)
dp decimal place(s)	dp		decimal place(s)
A2,1 2 or 1 (or 0) accuracy marks	A2,1		2 or 1 (or 0) accuracy marks
-x ee deduct x marks for each error	<i>–x</i> ee		deduct <i>x</i> marks for each error
PI possibly implied	PI		possibly implied
sca substantially correct approach	sca		substantially correct approach

Abbreviations used in Marking

MC –x	deducted x marks for mis-copy
MR – <i>x</i>	deducted x marks for mis-read
isw	ignored subsequent working
bod	gave benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

www.theallpapers.com

Question Number	Solution	Marks	Total	Comments
and Part				
1(a)	a = 3 $b = -5$	B1 B1	2	$(x+3)^2 - 5$
(b)	$(x + 3)^2 = 5$ & attempt at square root $x = -3 \pm \sqrt{5}$	M1 A1	2	Or use of formula – condone one slip oe unsimplified, but involving surd
	Total		4	
2(a)(i)	Gradient $PQ = -\frac{5}{3}$	B1	1	
(ii)	Grad of perp = $\frac{3}{5}$	M1		$m_1 \times m_2 = -1$ stated or used
	$y+10=\frac{3}{5}(x-8)$	A1	2	oe $5y-3x+74=0$ or $y=0.6x-14.8$
(b)	$y+10 = \frac{3}{5}(x-8)$ $5x+3(x-6) = 10 (\Rightarrow 8x = 28)$	M1		Attempt to eliminate x or y using $y = x - 6$ and one other equation
	$x = 3\frac{1}{2}$	A1		
	$y = -2\frac{1}{2}$	A1	3	$Q(3\frac{1}{2},-2\frac{1}{2})$
(c)	Coordinates of S: $x = 4$ y = 2	B1 B1	2	<i>S</i> (4, 2)
	Total		8	
3(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 6x - 9$	M1 A1 A1	3	One term correctly differentiated 2 terms correct all correct (No "+c" etc)
(b)	$3x^2 - 6x - 9 = 0$	M1		their $\frac{dy}{dx} = 0$
	$3x^{2} - 6x - 9 = 0$ 3(x-3)(x+1) = 0 x = 3, -1	m1 A1		Attempt to solve/factorise
	Other stationary point is $(-1, -3)$	A1	4	ft their second point's y- coordinate
				sc M1 A1 only for <i>verification</i> that $x = 3$ is stat'ry point if no attempt at quadratic
(c)	Minimum point at <i>P</i> Correct analysis of their gradient or <i>y</i> -value either side of $x = 3$	B1 E1	2	Or correct conclusion using second derivative
(d)	f(5.0) = -3 and $f(5.1) = 0.721$	M1		Both $f(5.0)$ and $f(5.1)$ attempted
	change of sign \Rightarrow root between 5.0 and 5.1	A1	2	Must have statement and NO wrong values
	Total		11	

Mathematics and Statistics B Pure 1 MBP1 November 2004

MBP1 (cont)

Question	Solution	Marks	Total	Comments
Number and Part				
1	$S_{n} = \frac{n}{2} [2a + (n-1)d]$ $S_{n} = \frac{n}{2} [10 + 6(n-1)]$	M1		Condone one slip in sum of <i>n</i> terms formula
	$S_n = \frac{n}{2} [10 + 6(n-1)]$	m1		Substituting $a = 5$ and $d = 6$
	$= 3n^2 + 2n$	A1	3	ag be convinced
(b)(i)	3n2 + 2n > 2640 (n+30)(3n-88) = 3n ² + 2n - 2640 > 0	B1	1	ag be convinced
(ii)	$3n > 88 \implies n > 29\frac{1}{3}$ <i>n</i> is integer so least value is 30 (or $n = 30$)	M1 A1	2	Or $n = 29.3$ etc. n = 30 implies M1 A1 (not $n > 30$)
	Total		6	
5(a)	135° or -45° (or -0.785 radians) $3x = angle \Rightarrow x = \frac{angle}{3}$	B1 M1		Any correct value from $\tan^{-1}(-1)$
	$3x = -45^{\circ} \implies x = -15^{\circ}$ $3x = 135^{\circ} \implies x = 45^{\circ}$ $3x = -225^{\circ} \implies x = -75^{\circ}$	$ \begin{array}{c} A1 \\ A1 \checkmark \\ A1 \checkmark \end{array} $	5	θ -0.262 radsTheir $\theta + 60^{\circ}$ 0.785 radsTheir $\theta - 60^{\circ}$ -1.309 radse.g. $x = 15^{\circ}$ then 75° then -45°
	Withhold final A1 or A2 for extra solutions in interval (condone radians)			may score M1 A0 A1√ A1√
(b)	Stretch in the x-direction scale factor $\frac{1}{3}$	M1 A1	2	And no other transformation described sc1 for stretch SF $\frac{1}{3}$
	Total		7	

MBP1 (cont)

Question Number	Solution	Marks	Total	Comments
and Part				
6(a)(i)	f(0) = -2 and $f(9) = 1$	B1	1	Both
(ii)	-2 4 x	B1 B1 B1	3	Graph translated so $y(0) < 0$ (4, 0) indicated or stated (0, -2) indicated or stated
(b)	End points of range; their $f(0)$ and $f(9) - 2 \le f(x) \le 1$	M1 A1	2	Or $\dots \ge -2$ Must have $f(x)$ or y or "range" not x
(c)(i)	$y = \sqrt{x} - 2$ and attempt at $x = \dots$	M1		Or flow diagram and reverse attempted
	$x = (y+2)^2$	Al		$y = (x + 2)^2$, if x & y interchanged first
	$f^{-1}(x) = (x+2)^2$	Al	3	$y = (x + 2)^2$, if x αy interchanged first
	$1 (\lambda) = (\lambda + 2)$	AI	5	
(ii)	f(0) and f(9) as end points or values from their range	M1		Attempt to use their range or half the domain correct
	Domain : $-2 \le x \le 1$	A1√	2	Provided 2 limits and no letter other than x
(iii)	<i>v</i>	M1		Attempt to reflect graph in $y = x$ Or to sketch $y = (x + 2)^2$
	-2 1 x	A1	2	Correct – only half a parabola drawn
	Total		13	
7(a)	$y_A = 16 + 14 = 30$; $y_B = 2 + 28 = 30$	M1		Attempt at both y_A and y_B
	Since points have same <i>y</i> -coordinate, <i>AB</i> is parallel to the <i>x</i> -axis.	A1	2	Both values must be correct for A1
(b)(i)	$7r^2 + \frac{16}{-7r^2} = 8$ (1.2)	M1		Power increased by 1. Clearly integrating.
	$r_{x} + \frac{1}{-2x^{2}} - r_{x} - \frac{1}{x^{2}} + \frac{1}{x^{2}$	A1		One term correct
		A1	3	All correct – need not be simplified
(ii)	$7x^{2} + \frac{16}{-2x^{2}} = 7x^{2} - \frac{8}{x^{2}} (+c)$ $\left[28 - \frac{8}{4}\right] - [7 - 8]$	M1		F(2) and F(1) attempted
	= 27	A1		
	Area of rectangle = 30 Shaded region = rectangle – integral (= 3)	B1 B1√	4	Allow negative values etc.
(c)	$f(-a) = -14a + \frac{16}{-a^3}$	M1		Any variable, x , a , etc. but $f(-a)$ attempted
	Shown to equal $-f(a)$	A1	2	
	\Rightarrow odd function		11	
	Total TOTAL		<u>11</u> 60	
	IUIAL		00	

www.theallpapers.com