AQA

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBP1 Pure 1

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
B	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
$-x$ ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC $-\boldsymbol{x}$
MR $-\boldsymbol{x}$
isw
bod
wr
fb
deducted x marks for mis-copy deducted x marks for mis-read ignored subsequent working given benefit of doubt work replaced by candidate formulae book

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out
Crossed out work
Alternative solution using a correct or partially correct method
mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

Mathematics and Statistics B Pure 1 MBP1 June 2005

Q	Solution	Marks	Total	Comments
1(a)	$y=-\frac{3}{4} x+\frac{1}{2}$	M1		attempt at $y=\ldots$.
(b)(i)	Gradient of $A B=-\frac{3}{4}$	A1	2	
	$m_{1} m_{2}=-1$ used or stated	M1		
	Gradient of $B C=\frac{4}{3}$	A1 \checkmark	2	ft their gradient of $A B$
(ii)	$y-3=\text { their } \frac{4}{3}(x-5)$	M1		ff 'their gradient' $y=\frac{4}{3} x-\frac{11}{3}$ or
	$4 x-3 y=11$	A1	2	$y=$ 'their m ' $x+c$ AND attempt to find c ag Algebra must be correct
(iii)	Solving $3 x+4 y=2$ and $4 x-3 y=11$	M1		eliminating x or y
	$\begin{aligned} & x=2 \\ & y=-1 \end{aligned}$	A1	3	$B(2,-1)$
	Total		9	
2(a)	$\begin{aligned} (3+\sqrt{2})^{2}=9+6 \sqrt{2}+(\sqrt{2})^{2} & \\ & =11+6 \sqrt{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	at least 3 terms
(b)	$\frac{98}{11+6 \sqrt{2}} \times \frac{11-6 \sqrt{2}}{11-6 \sqrt{2}}$	M1		multiply top and bottom by their conjugate
	$\begin{aligned} & \text { Denominator }=121-72=49 \\ & \text { Answer }=22-12 \sqrt{2} \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \sqrt{ } \\ \mathrm{~A} 1 \end{gathered}$	3	ft 'their' denominator (must be real) $m=22 ; n=-12$
	Total		5	
3(a)	$u_{1}=8$	B1		
	$u_{2}=11$	B1	2	
(b)	$\Rightarrow d=3$	B1 \checkmark	1	ft their values from (a)
(c)	$\begin{aligned} & S=\frac{n}{2}[2 a+(n-1) d] \text { or } \sum n=\frac{1}{2} n(n+1) \\ & =15[16+29 \times 3] \text { or } 3 \times 15 \times 31+5 \times 30 \end{aligned}$	M1 m1		condone one slip in formula $n=30$, and 'their a and d ' substituted
	Total		6	

MBP1 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline (b) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \hline \text { Discriminant }=4 k^{2}-8(k+4) \\
\& 4 k^{2}-8(k+4)>0 \\
\& k^{2}-2(k+4)> 0 \Rightarrow k^{2}-2 k-8>0
\end{aligned}
\] \\
Attempt at critical values \\
4 and -2 \\
Use of critical points AND sketch or sign diagram
\[
k<-2, k>4
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 2

4 \& | $b^{2}-4 a c$ attempted - in terms of k for real distinct roots |
| :--- |
| ag watch correct algebra |
| or attempt to factorise $(k \pm 4)(k \pm 2)$ correct (perhaps seen in solution) |
| ft their critical values M0 for $k>-2, k>4$ etc |
| correct answer without working scores full marks |

\hline \& Total \& \& 6 \&

\hline 5(a)(i) \& $f(-2)=5 ; f(3)=10$ \& B1 \& 1 \& both correct

\hline (ii) \& \& M1 \& \& \cup shaped parabola above x-axis - not touching

\hline \& $$
\begin{array}{ll|l}
\hline-2 & 0 & 3
\end{array}
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 3 \& $(0,1)$ stated or y-intercept shown as 1 Only drawn for $-2 \leq x \leq 3$ as on left

\hline \multirow[t]{2}{*}{(iii)} \& Range is $1 \leq \mathrm{f}(x) \leq 10$ \& $$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$ \& \& either end value correct and used correctly one correct inequality or both end values only

\hline \& \& A1 \& 3 \& all correct using $\mathrm{f}(x)$, for y [NOT x]

\hline (iv) \& | Inverse does NOT exist |
| :--- |
| Not one-one; f is many-one etc | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { E1 }
\end{aligned}
$$
\] \& 2 \&

\hline \multirow[t]{2}{*}{(b)} \& $\operatorname{gf}(x)=\left(x^{2}+1-1\right)^{4}$ \& M1 \& \&

\hline \& $=x^{8}$ \& \& 2 \&

\hline \& Total \& \& 11 \&

\hline
\end{tabular}

MBP1 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 6(a)
(b)

(c) \& \[
$$
\begin{aligned}
& \sin ^{2} \theta=1-\cos ^{2} \theta \\
& 3+\sin ^{2} \theta=4-\cos ^{2} \theta \text { etc } \\
& \frac{3+\sin ^{2} \theta}{2+\cos \theta}=2-\cos \theta \text { established } \\
& \frac{3+\sin ^{2} 2 x}{2+\cos 2 x}=2-\cos 2 x=\frac{5}{4} \\
& \Rightarrow \cos 2 x=2-\frac{5}{4}=\frac{3}{4} \\
& \begin{aligned}
& \cos ^{-1}\left(\frac{3}{4}\right)=41.4^{\circ} \\
& 2 x=41.4^{\circ} \\
& \quad \Rightarrow x=20.7^{\circ} \\
& \text { Also } \quad x=159.3^{\circ}
\end{aligned}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| B1 |
| B1 |
| M1 |
| A1 |
| A1 | \& 4 \& | used correctly |
| :--- |
| ag be convinced |
| ag be convinced |
| condone more SF or 21° |
| condone more SF (withhold if extra solutions in the given interval) |

\hline \& Total \& \& 7 \&

\hline \multirow[t]{2}{*}{| $7(a)(i)$ |
| :--- |
| (ii) |} \& \[

\frac{\mathrm{d} y}{\mathrm{~d} x}=2-\frac{16}{x^{3}}

\] \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& 3 \& \[

$$
\begin{aligned}
& 2 \\
& k x^{-3} \\
& -16 x^{-3}
\end{aligned}
$$
\]

\hline \& Putting

$$
\begin{aligned}
& \text { 'their' } \frac{\mathrm{d} y}{\mathrm{~d} x}=0\left(\Rightarrow 2=\frac{16}{x^{3}}\right) \\
& x^{3}=8 \\
& \Rightarrow x=2, y=6
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { m1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 3 \& Forming equation $x^{n}=\ldots$ (or $x=\ldots$) cso and both coordinates correct (2,6) and no other values of x

\hline (b)(i) \& $$
x^{2}-\frac{8}{x}(+c)
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { M1 }
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& x^{2} \\
& k x^{-1}
\end{aligned}
$$
\]

\hline (ii) \& $$
\begin{array}{r}
{[16-2]-[1-8]}
\end{array}=21
$$ \& \[

$$
\begin{aligned}
& \text { A1 } \\
& \text { M1 }
\end{aligned}
$$

\] \& 3 \& \[

$$
\begin{aligned}
& -8 x^{-1}(\text { condone no }+c) \\
& \mathrm{F}(4)-\mathrm{F}(1) \text { from their answer to }(\mathrm{b})(\mathrm{i})
\end{aligned}
$$
\]

\hline (c)(i) \& \[
d=21

\] \& | A1 |
| :--- |
| B1 | \& 2 \& $x=1, y=10$ in $x+2 y=d$ therefore

$$
d=21
$$

\hline \multirow[t]{2}{*}{(ii)} \& \multirow[t]{2}{*}{| $\begin{gathered} \qquad p=8 \frac{1}{2} \\ \text { Area of trapezium }=\frac{1}{2}(10+p) \times 3 \\ =27 \frac{3}{4} \end{gathered}$ |
| :--- |
| Shaded region $=$ trapezium $-(b)(i i)$ value $=6 \frac{3}{4}$ |} \& \[

$$
\begin{gathered}
\mathrm{B} 1 \\
\mathrm{~B} 1 \checkmark
\end{gathered}
$$

\] \& 2 \& | Since $4+2 p=21$ |
| :--- |
| Allow if no value of p found $\int_{1}^{4}\left(\frac{d}{2}-\frac{x}{2}\right) \mathrm{d} x=\left[\frac{d x}{2}-\frac{x^{2}}{4}\right]_{1}^{4}$ |

\hline \& \& $$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \& 3 \& cso

\hline \& Total \& \& 16 \&

\hline \& TOTAL \& \& 60 \&

\hline
\end{tabular}

