GCE 2005 January Series

Mark Scheme

Mathematics and Statistics B (MBP1)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

Key to Mark Scheme

M	mark is for		method
m	mark is dependent on one o	r more M marks and is for	method
A	mark is dependent on M or	m marks and is for	accuracy
B	mark is independent of M o	or m marks and is form	lethod and accuracy
E	mark is for		explanation
\checkmark or ft or F		follow thr	ough from previous
			incorrect result
CAO			correct answer only
AWFW		anythin	g which falls within
AWRT		anyth	ing which rounds to
AG		-	answer given
SC			special case
OE			or equivalent
A2,1			0) accuracy marks
- <i>x</i> EE		deduct x 1	narks for each error
NMS			no method shown
PI			possibly implied
SCA		substantial	lly correct approach
c			candidate
SF			significant figure(s)
DP			decimal place(s)

Abbreviations used in Marking

MC - x	deducted <i>x</i> marks for mis-copy
MR – <i>x</i>	deducted x marks for mis-read
ISW	ignored subsequent working
BOD	
WR	work replaced by candidate
FB	formulae booklet

Application of Mark Scheme

No method shown: Correct answer without working Incorrect answer without working	mark as in scheme zero marks unless specified otherwise
More than one method/choice of solution: 2 or more complete attempts, neither/none crossed out 1 complete and 1 partial attempt, neither crossed out	mark both/all fully and award the mean mark rounded down award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Question	Solution	Marks	Total	Comments
Number and Part				
1(a)	Attempt at product of two brackets	M1		(3 <i>x</i>)(<i>x</i>)
	(3x+4)(x-2)	A1	2	Correct (ignore further work e.g. roots)
(b)	b) Use of critical points AND sketch or			ft their factors
	sign diagram			M0 for $x < 2$, $3x < -4$ etc
	$-\frac{1}{3}$ 2			
	4			Accord $u \leq 2$ $u > 4$
	$-\frac{-3}{3} < x < 2$	A1	2	Accept $x < 2$, $x > -\frac{1}{3}$
				M1, A0 for $-\frac{4}{3} \le x \le 2$
				Correct without working scores M1,A1
	Total		4	
2(a)(i)	a + 5d = 19	M1		Use of <i>n</i> th term = $a + (n-1)d$
	a + 9d = 55	A1		Both correct
	$= 36 \Rightarrow d = 9$	A1	3	ag be convinced
(ii)	first term, $a = -26$	B1	1	
(b)	$S = \frac{n}{2} [2a + (n-1)d]$	M1		Condone one slip in formula
	$2^{1-\alpha}$			
	$= 200[-52+9 \times 399]$	m1		n = 400, d = 9 and 'their a' substituted
	= 707 800	A1	3	
	Total		7	
3(a)(i)	$3^{\frac{1}{2}}$	B1	1	
(ji)	3 ^{x+2}	B1	1	
()				
(b)	Equating "their" powers of 3			$\sqrt{3}$ $\sqrt{3}$ $\frac{1}{2}$
	$x+2=\frac{1}{2}$	MI		or $3^{*} = \frac{1}{9} = 3^{2}$ attempt
				or $x \log 3 + 2 \log 3 = \frac{1}{2} \log 3$
	$\rightarrow r = -1$		_	_
	$\rightarrow x - \frac{1}{2}$	A1	2	
	Total		4	

Mathematics and Statistics B Pure 1 MBP1 January 2005

Question	Solution	Marks	Total	Comments
Number and Part				
4(a)(i)	Gradient $AB = \frac{5}{2}$	B1	1	
(ii)	$y-3 = \frac{5}{2}(x-1)$ or $y-8 = \frac{5}{2}(x-3)$	M1 A1√		y = "their m" $x + c$ AND attempt to find c ft their gradient
	5x - 2y + 1 = 0	A1	3	oe with integer coeffs and $= 0$
(b)(i)	$m_1 m_2 = -1$ used or stated	M1		
	Gradient $BC = \frac{k-8}{10}$	B1		Or <i>BC</i> equation $y = -\frac{2}{5}x + \frac{46}{5}$
	$\Rightarrow k = 4$	A1	3	Accept $y = 4$ or (13, 4)
(ii)	$AB = \sqrt{29}$ or $BC = \sqrt{(8-k)^2 + 100}$	B1		Either side correct ($BC = \sqrt{116}$)
	Area = $\frac{1}{2}(AB \times BC)$	M1		
	= 29	A1	3	cso. Condone calculator use if final answer correct
	Total		10	
5(a)	$\cos^{-1}(-0.5) = 120^{\circ}$	B1		Condone radians (2.094 etc)
	$4x + 40^{\circ} = A \Rightarrow x = \frac{A - 40^{\circ}}{4}$	M1		$\cos x = \frac{-0.5 - 40^{\circ}}{4} \text{ etc scores M0}$
	$x = 20^{\circ}$	A1		cso. A0 for mixture of degrees and radians
	$4x + 40^\circ = 240^\circ \Rightarrow x = 50^\circ$	A1		cso
	$4x + 40^{\circ} = 480^{\circ} \Rightarrow x = 110^{\circ}$ $4x + 40^{\circ} = 600^{\circ} \Rightarrow x = 140^{\circ}$	A1√ A1√	6	ft 90° + their 20° ft 90° + their 50°
				Withhold last A1 $$ or last 2 A1 $$ s if extra solutions in the interval
	Total		6	

Question	Solution	Marks	Total	Comments
Number				
and Part				
6(a)(1)	dv 6	M1		Power reduced by 1 in one term
	$\frac{dy}{dr} = 6x - \frac{dy}{r^4}$	A1		One term correct
		Al	3	Other term correct
(ii)	'their' $\frac{dy}{dx} = 0 \left(\Rightarrow 6x = \frac{6}{x^4}\right)$	M1		
	$x^5 = 1$	m1		Forming equation $x^n = \dots$
	$\Rightarrow x = 1$	A1	3	
(b)(i)	'their' $\frac{dy}{dx} = 12 \implies 6x - \frac{6}{x^4} = 12$	M1		
	leading to $x^{5} - 2x^{4} - 1 = 0$	A1	2	ag be convinced
	$f(x) = x^5 - 2x^4 - 1$			
(ii)	f(2) = -1; f(2.1) = 0.9448	M1		Attempt at $f(2)$ and $f(2.1)$
	Change of sign \Rightarrow root between 2 and 2.1	A1	2	Must at least say $f(2) < 0$ and $f(2.1) > 0$
(a)(i)				
(C)(I)		M1		Power increased by 1 in one term
	$x^3 - x^{-2}$ (+ constant)	A1		One term correct
		A1	3	Other term correct (ignore $+ c$)
(ii)	$\left[8-\frac{1}{4}\right]-\left[1-1\right]$	M1		Limits $F(2) - F(1)$ - generous if $F(1) = 0$
	$=7\frac{3}{4}$	A1	2	Any equivalent
	Total		15	

MBP1(cont)

ABP1(cont)	~ • •	25.2		~
Question	Solution	Marks	Total	Comments
Number				
and Part				
/(a)	Translation of [2]	M1		Substantially correct attempt for M1
		A1		Shift 2 units across gets M1. A0 etc
	Stratch in a direction	MI		
	Stretch in y-direction SE 3		4	$\nu \uparrow $
	51 5	Π1	-	
$(\mathbf{b})(\mathbf{i})$	Parabola roughly as drawn	B 1	1	
(0)(1)	i arabora rouginy as drawn	DI	1	
(ii)	Least value 0	M1		$x \rightarrow x$
	Range: $f(x) \ge 0$	A1	2	NOT $x \ge 0$
(\mathbf{c})	$3(r-2)^2 - 15 \Rightarrow (r-2)^2 - 5$	M1		Or multiplying out to $3r^2 - 12r - 3 = 0$
(0)	$S(x-2) = 13 \rightarrow (x-2) = 5$	1011		Or multiplying out to $5x - 12x - 5 = 0$
	$x-2=\pm\sqrt{5}$ (condone no \pm)	m1		Or use of formula on $3x^2 - 12x - 3 = 0$
	_			
	$x = 2 \pm \sqrt{5}$	A1	3	oe as FINAL surd answer offered
(d)	f is many-one (or not one-one)	E1	1	Two values of x when $y = 15$ etc
()				
(e)(i)	$f(h) - f(0) = 3(h-2)^2 - 12 =$	M1		And attempt to multiply out
	$f(h) - f(0) = 3h^2 - 12h$			
	$\frac{1(n)-1(0)}{h} = \frac{3n-12n}{h} = 3h-12$	A1	2	ag be convinced
	11 11			
(ii)	Letting <i>h</i> tend to zero			
	f'(0) = -12	B1	1	No marks if simply differentiating $f(x)$
	Total		14	
	TOTAL		60	