

Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBP1

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and wales 3644723 MAANegtheelipapers (AQA) is a company limi

AQA

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
С		Candidate

Abbreviations used in marking

MC - x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question	Solution	Marks	Total	Comments
Number				
and part 1(a)	7+9 <i>d</i>	M1		Condone $7+10d$, or attempt to consider
1(u)	7+9d = 43 $d = 4$	A1	2	43-7
(b)	$S_n = \frac{1}{2}n(2a + (n-1)d)$ formula attempted	M1		$\boxed{9} {\text{or 10}}$ Condone one slip using <i>n</i> or 50
(0)	$S_n = \frac{1}{2}n(2u + (n - 1)u)$ formula attempted = 25 (14+196)	M1 A1√		ft their $49 d$ (eg $25 \times 190.4 = 4760$)
	= 5250	A1	3	
(c)(i)	7 + (k - 1)d > 1000	M1		Condone = instead of >
	$\Rightarrow 4k > 997$	A1	2	ag be convinced
(ii)	(Since <i>k</i> is integer) $k = 250$	B1	1	
	Total		8	
2(a)(i)	Gradient $AB = -1$	B1	1	Accept $\frac{4}{-4}$ etc if $\frac{\Delta y}{\Delta x}$ used
				Withhold if incorrect formula used
(ii)	y - 2 = -(x + 1)	B1	1	or $y = -x + c$ and use of (-1,2) to find c
	\Rightarrow equation of <i>AB</i> is $x + y = 1$			ag
(b)(i)	$x + 3y = 7 \implies y = \dots$	M1		Making y the subject to get gradient or
	Gradient of $x + 3y = 7$ is $-\frac{1}{3}$			awareness that $m_1 \times m_2 = -1$
	gradient $BC = 3$	A1	2	
(ii)	Equation of <i>BC</i> is $y = 3(x-5)$	B1√	1	Correct or ft their BC gradient
(c)	Solving $x + y = 1$ & candidate's BC	M1		
	4x - 15 = 1 etc	M1		Eliminating x or y
	$\Rightarrow B(4,-3)$	A1	3	
	Total		8	
3(a)	y T	M1		Idea of reflection in y-axis
		A1	2	Accurate for $-5 \le x \le 5$
(1-)	 У ↑	MI		Concret share or 2 sections correct
(b)	4	M1		General shape or 2 sections correct
	1 x	A1	2	Correct graph with $y = 4$ for $x > 4$
	1 4 5			
(c)	Reflection in $y = k$	M1		Accept reflection and
	:	A 1	2	translation in y-direction
	in $y = 1$	A1	2	Accept correct composite transformation e.g. reflect in <i>x</i> -axis followed by
				translation of 2 units in y-direction
	Total		6	

Question	Solution	Marks	Total	Comments
Number				
and part 4(a)	g(-1) = 6	B1		
4(a)			2	
	g(2) = 9	B1	2	
(b)	-1 o 2 x	M1 A1	2	Parabola (part or whole) ONLY drawn for $-1 \le x \le 2$
(c)	Range	M1		Either 5 or 9
	$5 \le g(x) \le 9$	A1 A1	3	One inequality correct All correct and $g(x)$ or y (condone $f(x)$ but not x)
(d)	g ^{-1} does NOT exist Two values of x give same value of y	B1 E1	2	Many-one (not one-one,etc)
(e)	$gg(x) = (x^2 + 5)^2 + 5$	M1		Must be correct expression
	$= x^4 + 10x^2 + 30$	A1	2	$p = 10, \qquad q = 30$
	Total		11	
5(a)(i)	$x^2 + (3-7)x + 5 - 49 = 0$			Be convinced - no missing brackets etc
	$\Rightarrow x^2 - 4x - 44 = 0$	B1	1	ag Must have $= 0$
(ii)	Use of quadratic equation formula or attempt to complete square	M1		Condone one slip $\frac{4 \pm \sqrt{192}}{2}$
	\Rightarrow (x =) 2±4 $\sqrt{3}$	A1	2	
(b)(i)	Discriminant $b^2 - 4ac$	M1		Used - must involve k
	$(3-k)^2 - 4(5-k^2)$ $\Rightarrow 5k^2 - 6k - 11 = 0$	A1		$9-6k+k^2-20+4k^2$
	$\Rightarrow 5k^2 - 6k - 11 = 0$	A1	3	ag must use " $= 0$ " condition
(ii)	(5k-11)(k+1) = 0	M1		Attempt to solve or factorise
	$\Rightarrow k = -1, \frac{11}{5}$	A1	2	
	Total		8	

Question	Solution	Marks	Total	Comments
Number and part				
6(a)	Awareness that $\frac{\sin\theta}{\cos\theta} = \tan\theta$	M1		Generous
	$\tan 2x = 0.8$	A1	2	Correctly derived – not fudged
(b)	\tan^{-1} (candidate's k)	M1 A1		38.6598° 0.6747 rads
	$2x = 38.7^{\circ}$ $2x = 38.6598^{\circ} \implies x = 19.3^{\circ}$	A1 A1		condone 38.6° or better 19.3299°
		AIV		ft half their tan ^{-1}k accept 0.337 rads
	$2x = 218.6598^{\circ} \implies x = 109.3^{\circ}$	A1√	4	Their previous value $+90^{\circ}$
				Must be degrees for final mark
				Lose final A1 for extra solutions in interval
	Total		6	
7(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$	B1		
	$-\frac{162}{x^3}$	M1		Power x^{-3}
	x^3	A1	3	
(ii)	$2x - \frac{162}{x^3} = 0$	M1	5	Putting candidate's $\frac{dy}{dx} = 0$
	$\Rightarrow x^4 = 81$ ag	A1	2	M1 only for verification $x = \pm 3$
(iii)	$x^2 = 9$ or $x = \sqrt[4]{81}$	M1		Or $x = 3$ as only value given
	$x = \pm 3$	A1	2	
(iv)	y = 18	B1	1	No need to show both equal 18 B0 if 2 different <i>y</i> values given
$(\mathbf{b})(\mathbf{i})$	3 91	B1		x^3 term
(b)(i)	$\frac{x^3}{3} - \frac{81}{x}$ (+ <i>C</i>)	M1		x^{-1} power
	$S \lambda$	A1	3	correct second term
(ii)	$\left[\frac{27}{3} - \frac{81}{3}\right] - \left[\frac{1}{3} - 81\right]$	M1		Correct use of limits 1 and 3 substituted into answer for part (b)(i)
	$62\frac{2}{3}$	A1	2	Accept 62.7 or better, condone 62.66 etc
	Total		13	
	TOTAL		60	