

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBM6 Mechanics 6

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

Mmark is formmark is dependent on one or more M marks and iAmark is dependent on M or m marks and is for	method s for method accuracy accuracy
	accuracy
A mark is dependent on M of m marks and is for	
	accuracy
B mark is independent of M or m marks and is for	5
E mark is for	explanation
$\sqrt{\mathbf{or}}$ ft or F	follow through from previous
	incorrect result
cao	correct answer only
cso	correct solution only
awfw	anything which falls within
awrt	anything which rounds to
acf	any correct form
ag	answer given
sc	special case
0e	or equivalent
sf	significant figure(s)
dp	decimal place(s)
A2,1	2 or 1 (or 0) accuracy marks
<i>-x</i> ee	deduct x marks for each error
pi	possibly implied
sca	substantially correct approach

Abbreviations used in Marking

MC - x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as

Q	Solution	Marks	Total	Comments
1(a)	$\dot{r} = 2t$,	M1		Attempt at \dot{r} or $\dot{\theta}$
	$\dot{\theta} = 0.1 \mathrm{e}^{0.1 t} \; , \qquad \qquad$	A1		Both correct
	When $t = 2$, $r = 12$, $\theta = e^{0.2}$,			
	$\dot{r} = 4, \ \dot{\theta} = 0.1 \mathrm{e}^{0.2},$			
	Radial velocity is $\dot{r} = 4$	A1		
	Transverse velocity is $r\dot{\theta} = 1.2 \mathrm{e}^{0.2}$	A1	4	
(b)	$\ddot{r} = 2$ $\ddot{\theta} = 0.01 \mathrm{e}^{0.1t}$			
	$\ddot{r} = 2, \ \ddot{\theta} = 0.01 e^{0.2}$	M1		
	Radial acceleration is $\ddot{r} - r\dot{\theta}^2$			
	$= 2 - 12 \times (0.1e^{0.2})^2$	M1		
	$= 2 - 0.12e^{0.4}$	A1		
	Transverse acceleration is $2\dot{r}\dot{\theta} + r\ddot{\theta}$			
	$= 8 \times 0.1e^{0.2} + 12 \times 0.01 e^{0.2}$	M1	-	
	$= 0.92 e^{0.2}$	A1	5 9	
2	Total Using forces and moments		9	
-	At time t,			
	let the sphere have rolled a distance x			
	down the inclined plane and have an			
	angular velocity of ω . The speed of the centre of the sphere is v			
	where $v = r\omega$.			
	Since the sphere does not slide			
	$v = \dot{x} = r\dot{\theta} = r\omega$	B1		
	Using ' $F = ma$ ' along the inclined plane	M1		
	$ma = mg \sin \alpha - F$	A1		
	Using $G = I\ddot{\theta}$ about <i>O</i> , the centre of the cylinder,	M1		
	$Fr = \frac{2}{3} mr^2 \ddot{\theta} = \frac{2}{3} mr^2 \dot{\omega}$	A1		
	$F = \frac{2}{3} mr\dot{\omega}$			
	Since $v = \dot{x} = r\dot{\theta} = r\omega$, $a = r\dot{\omega}$			
	$ma = mg\sin\alpha - \frac{2}{3}mr\dot{\omega}$	M1		
	$\frac{5}{3}ma = mg\sin\alpha$			
	$a = \frac{3}{5} g \sin \alpha$	A1	7	

Mathematics and Statistics B Mechanics 6 MBM6 June 2005

Q	Solution	Marks	Total	Comments
	Alternatively			
	Using energy			
	At time <i>t</i> , let the cylinder have rolled a			
	distance x down the inclined plane and			
	have an angular velocity of ω . The speed of the centre of the cylinder is v			
	where $v = r\omega$.			
	Since the cylinder does not slide			
	$v = \dot{x} = r\dot{\theta} = r\omega$	(B1)		As before
		(D1)		
	The kinetic energy of the sphere is the			
	kinetic energy of the linear motion of the			
	centre of mass of the sphere plus the			
	rotational kinetic energy of the sphere	(M1)		
	$= \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$			
	$=\frac{1}{2}m(r\omega)^2 + \frac{1}{2}\times\frac{2}{3}mr^2\times\omega^2$			
	$=\frac{5}{6}mr^2\omega^2$	(A1)		
	By conservation of energy,	(M1)		
	$mgx\sin\alpha = \frac{5}{6}mr^2\omega^2 = \frac{5}{6}mv^2$	(A1)		
	Differentiating with respect to x,			
	$mg\sin\alpha = \frac{d}{dr}(\frac{5}{6}mv^2)$	(\mathbf{M}_{1})		
	a.r	(M1)		
	$= \frac{\mathrm{d}}{\mathrm{d}v} \left(\frac{5}{6}mv^2\right) \frac{\mathrm{d}v}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x}$			
	$= \frac{5}{3}mv \times a \times \frac{1}{v}$			
	$=\frac{5}{3}ma$			
	$\therefore a = \frac{3}{5}g\sin\alpha$	(A1)	(7)	
	Total		7	

Q	Solution	Marks	Total	Comments
3 (a)	No slipping $\Rightarrow a\dot{\theta} = v$	B1		
	Conservation of energy			
	$\frac{1}{2} \times 5m \times (a\dot{\theta})^2 + \frac{1}{2} \times 2m \times (a\dot{\theta})^2$	M1		
	$+\frac{1}{2}\times 8ma^2\times\dot{\theta}^2$	Al		
	$=g(5ma\theta-2ma\theta)$	A1		
	$15ma^2\dot{\theta}^2 = 6mga\theta$	M1		
	$a\dot{\theta}^2 = \frac{2g}{5}\theta$	A1	6	
	Alternatively			
	No slipping $\Rightarrow a\dot{\theta} = v$	(B1)		
	Using ' $F = ma$ ' for each particle			
	$5mg - T_1 = 5mf$	(M1)		
	and $T_2 - 2mg = 2mf$	(A1)		
	Using ' $G = I\ddot{\theta}$ '			
	$T_1 a - T_2 a = 8ma^2 \ddot{\theta}$	(M1)		
	$3mg = 7 mf + 8ma\ddot{\theta}$			
	= 15 mf			
	$a\ddot{\theta} = \frac{g}{5}$			
	$a\dot{\theta}\ddot{\theta} = \frac{g}{5}\dot{\theta}$			
	$\frac{1}{5}a\dot{\theta}^2 = \frac{g}{5}\theta + c ,$	(A1)		
	c = 0			
	$a\dot{\theta}^2 = \frac{2g}{5}\theta$	(A1)	(6)	

Q	Solution	Marks	Total	Comments
(b)	Differentiating with respect to <i>t</i>			
	$2a\dot{\theta}\ddot{\theta} = \frac{2g}{5}\dot{\theta}$	M1		
	5			
	$a\ddot{\theta} = \frac{g}{5} = f$	A1		
	Using $F = ma$ for each particle			
	$5mg - T_1 = 5mf$	M1 A1		
	and $T_2 - 2mg = 2mf$	A1		
	$ \begin{cases} 5mg - T_1 = mg \\ Hence T_1 = 4mg \end{cases} $	A1		
	Thence $T_1 = 4mg$ $T_2 = \frac{12}{5}mg$			
	$:: T_1 : T_2 = 4mg : \frac{12}{5}mg$ = 5 : 3	A1	7	
	- 5 . 5		/	
	Alternatively			
	Using $\frac{g}{5} = f$			
	$T_1 = 5mg - 5mf$			
	= 4 mg	(M1)		
	T = 2ma + 2mf	(A1)		
	$T_2 = 2mg + 2mf$ $= \frac{12}{5} mg$	(M1)		
		(A1)		
	$\therefore T_1: T_2 = 4mg: \frac{12}{5}mg$			
	= 5 : 3	(A3)	(7)	
	Or			
	Using ' $F = ma$ ' for each particle			
	$5mg - T_1 = 5mf$ and $T_2 - 2mg = 2mf$	(M1)		
	and $T_2 = 2mg = 2mg$	(A2)		
	Using $G = I\ddot{\theta}$,	$(\mathbf{M}^{\mathbf{I}})$		
	$T_1 a - T_2 a = 8ma^2 \ddot{\theta}$	(M1)		
	$T_1 = 4 mg$	(A1)		
	$T_2 = \frac{12}{5} mg$	(A1)		
	$\therefore T_1: T_2 = 4mg: \frac{12}{5}mg$			
	= 5 : 3	(A1)	(7)	
			12	
	Total		13	

Q	Solution	Marks	Total	Comments
4(a)	Length of AB is $2l \cos \theta$	B1		
	Extension of spring is $2l \cos \theta - l$	B1		
	Potential energy of spring is			
	$4mg\frac{(2l\cos\theta-l)^2}{2l}$			
	21			
	$= 2mgl\left(2\cos\theta - 1\right)^2$	M1 A1		
	Potential energy of rod, below <i>OB</i> , is			
	$-mgl\cos\theta$	A 1	E	
	$V = 2mgl (2\cos\theta - 1)^2 - mgl\cos\theta$	A1	5	
(b)	dV			
	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = 2mgl \times -4\sin\theta \left(2\cos\theta - 1\right)$			
	$+ mgl\sin\theta$	M1 A1		
	$= mgl\sin\theta \ (1+8-16\cos\theta)$			
	= 0			
	When $\theta = 0$ or $\cos^{-1}\frac{9}{16}$ [or 0.97339]	A1 A1	4	Accept $\theta = 55.8^{\circ}$
(c)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = 9 mgl\sin\theta - 8 mgl\sin2\theta$			
	$\frac{1}{d\theta} = 9 \text{ mgr} \sin \theta = 8 \text{ mgr} \sin 2\theta$			
	$d^2 V = 0$ moleces $0 = 16$ moleces 20	M1 A1		
	$\frac{d^2 V}{d\theta^2} = 9 \ mgl\cos\theta - 16 \ mgl\cos2\theta$	MI AI		
	$d^2 V$			
	When $\theta = 0$, $\frac{d^2 V}{d\theta^2} = -7mgl$ thus V has			
	maximum thus unstable equilibrium	M1 A1		Need– 7 <i>mgl</i> for A1
	When $\theta = \cos^{-1} \frac{9}{16}$, $\frac{d^2 V}{d \theta^2} = \frac{175}{16} mgl$			
	when $\theta = \cos^{-10}$, $\frac{1}{d\theta^2} = \frac{1}{16} mgt$			A 1 1 1
	[ie positive]			Accept any positive
	thus V has minimum thus stable	A1	5	
	equilibrium	A1		
	Total		14	

Q	Solution	Marks	Total	Comments
5(a)	M of I of element is $\frac{\delta x}{4a}mx^2$	M1		Use of ρ or $\frac{m}{4a}$
	M of I of rod = $\sum_{n=1}^{\infty} \frac{\delta x}{4a} mx^2$	M1		4 <i>a</i>
		M1		M2 A1 : 6 1
	$= \int_{0}^{4a} \frac{mx^2}{4a} dx$	M1 A1		M3 A1 if used $\int_{a}^{2a} mx^{2}$
	0			$\int_{-2a}^{2a} \frac{mx^2}{4a} dx$ and then parallel axis theorem
	$= \left[\frac{m}{4a} \times \frac{x^3}{3}\right]_0^{4a}$			
	$=$ $\frac{16}{3}ma^2$	A1	5	
(b)(i)	M of I of rod PQ about end P is $\frac{16}{3}ma^2$	B1		
(0)(1)	M of I of rod PR about end P is $\frac{16}{3}ma^2$	DI		
	M of I of quadrant QR about P is	D1		
	$5m(4a)^2 = 80ma^2$ M of I of ride boat is	B1		
	$\frac{16}{3}ma^2 + \frac{16}{3}ma^2 + 80ma^2$	M1		
	$= \frac{272}{3}ma^2$	A1	4	
(ii)	Greatest angular velocity is when the rods			
	are inclined at $\frac{\pi}{4}$ to the downward			
	vertical. Change in potential energy for rod PQ is	M1		
	$mg(2a + a\sqrt{2})$	B1		
	Change in potential energy for rod <i>PR</i> is $\sqrt{2}$	B1		
	$mg \times a\sqrt{2}$ Change in potential energy for quadrant	DI		
	QR is $5mg\left(\frac{8a}{\pi} + \frac{8\sqrt{2}a}{\pi}\right)$	M1 A1		Need to use $\frac{8a}{\pi}$ or $\frac{8a\sqrt{2}}{\pi}$
	Conservation of energy:			π π π
	$\frac{1}{2} \times \frac{272}{3} ma^2 \dot{\theta}^2 =$	M1		M1 if at least one side correct
	$mga\left(2+\sqrt{2}+\sqrt{2}+\frac{40}{\pi}+\frac{40\sqrt{2}}{\pi}\right)$	A1		
	$\dot{\theta}^2 = \frac{g}{a} \frac{3(1+\sqrt{2})(\pi+20)}{68\pi}$			
	$\dot{\theta} = \sqrt{\frac{3(1+\sqrt{2})(\pi+20)}{68\pi}\frac{g}{a}} \text{ or } 0.886\sqrt{\frac{g}{a}}$	A1	8	
	$\sqrt{-\sqrt{-68\pi}} \frac{a}{a} = 010.880 \sqrt{\frac{a}{a}}$	AI	0	If wood 9 rother than 40
				If used 8 rather than 40 [not 5mg used] total mark is M3 B2 A1
	Total		17	for (ii)
	Total TOTAL		<u> </u>	
	IUIAL		00	