Version 1.1 0506

GCE 2004 June Series

Mark Scheme

Mathematics and Statistics B MBM6

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170

or

download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

www.theallpapers.com

Key to Mark Scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
Е	mark is for	explanation
$\sqrt{\mathbf{or}}$ ft or F		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
<i>-x</i> ee		deduct <i>x</i> marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC - x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

No method shown:	
Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than and mothed / shares of as butions	
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Question	Solution	Marks	Total	Comments
Number				
and Part	At time t			
1	let the cylinder have rolled a distance x			
	down the inclined plane and have an			
	angular velocity of ω .			
	The speed of the centre of the cylinder is v			
	where $v = r\omega$ Since the cylinder does not slide			
	since the cylinder does not shace $y = \dot{y} - r\dot{\theta} - r\phi$	D1		
	$v - x - v \phi - v \phi$	BI		
	Using forces and $G = I\ddot{\theta}$			Alternatively using energy The kinetic energy of the cylinder is the kinetic energy of the linear motion of the
	Using $F = ma$ along the inclined plane	M1		rotational kinetic energy of the cylinder $= \frac{1}{2}mv^{2} + \frac{1}{2}I\omega^{2}$ $= \frac{1}{2}m(r\omega)^{2} + \frac{1}{2}\times\frac{1}{2}mr^{2}\times\omega^{2}$
	$ma = mg\sin\alpha - F$	A1		$= \frac{3}{4}mr^2\omega^2$
	Using $G = I\ddot{\theta}$ about <i>O</i> , the centre of the			
	cylinder,	M1		By conservation of energy,
	$Fr = \frac{1}{2}mr^2\dot{\theta} = \frac{1}{2}mr^2\dot{\omega}$	A1		$mgx\sin\alpha = \frac{3}{4}mr^2\omega^2 = \frac{3}{4}mv^2$
	$F = \frac{1}{2}mr\dot{\omega}$			
	Since $v = \dot{x} = r\dot{\theta} = r\omega, \ a = r\dot{\omega}$			Differentiating with respect to <i>x</i> ,
	$ma = mg\sin\alpha - \frac{1}{2}mr\dot{\omega}$	M1		$mg\sin\alpha = \frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{4}mv^2)$
	$\frac{3}{2}ma = mg\sin\alpha$			$= \frac{\mathrm{d}}{\mathrm{d}v} (\frac{3}{4}mv^2) \frac{\mathrm{d}v}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x}$
				$=\frac{3}{2}mv \times a \times \frac{1}{v}$
				$=\frac{3}{2}ma$
	$a = \frac{2}{3}g\sin\alpha$	A1	7	$\therefore a = \frac{2}{3}g\sin\alpha$
	Total		7	

Mathematics and Statistics B Mechanics 6 MBM6 June 2004

Question	Solution	Marks	Total	Comments
Number				
and Part				
2 (a)(1)	$r\dot{\theta} = \frac{r^2\theta}{r}$	M1		
	$= \frac{4}{4}$			
	$= 4 + \cos\theta$	A1	2	
(ii)	$\dot{r} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{4}{4 + \cos \theta} \right)$	M1		Allow for $\frac{d}{d\theta} \left(\frac{4}{4 + \cos \theta} \right)$
	$= \frac{4\sin\theta}{\left(4+\cos\theta\right)^2}\dot{\theta}$	M1		
	$= \frac{4\sin\theta}{\left(4+\cos\theta\right)^2} \frac{4+\cos\theta}{\frac{4}{4+\cos\theta}}$			
	$= \sin \theta$	A1	3	
(b)	Transverse velocity, $r\dot{\theta}$, is $4 + \cos\theta$			
	Radial velocity is $\sin\theta$			
	Magnitude of velocity is			
	$\sqrt{(4+\cos\theta)^2+(\sin\theta)^2}$	M1		
	$=\sqrt{17+8\cos\theta}$	A1	2	
	Total		7	

MBM6 (cont)

MBM6 (cont)

Question Number	Solution	Marks	Total	Comments
and Part				
3(a)	Consider ring shown	M1		
	x dx			
	$\delta I = 2\rho\pi x \delta x. x^2$ = $2\pi\rho x^3 \delta x$			
	$\frac{\mathrm{d}t}{\mathrm{d}x} = 2\pi\rho x^3$	A1		
	$I = \int_0^a 2\pi\rho x^3 \mathrm{d}x = \pi\rho \;\frac{a^4}{2}$	M1		
	$= \frac{1}{2} ma^2 \text{ [using } m = \pi a^2 \rho \text{]}$	A1 B1	5	For $m = \pi a^2 \rho$
(b)(i)	M of I of rod about centre is			
	$\frac{1}{3}m(3a)^2 = 3ma^2$	B1		
	M of I of rod about C is $3ma^2 + m(2a)^2 = 7ma^2$ M of I of disc about centre is	B1		
	$\frac{1}{2}4m(2a)^2 = 8ma^2$	B1		
	M of I of disc about C is $8ma^2 + 4m(7a)^2$	M1		
	$=204ma^2$	A1		
	M of I of compound pendulum is $211ma^2$	A1	6	
(ii)	Using $G = I\ddot{\theta}$,	M1		
	$211 \ ma^2 \ddot{\theta} = - \ mg.2a \ \sin\theta - 4mg.7a \ \sin\theta$ $= - \ 30mga\theta \text{[for small angles]}$	A1 A1		
	$\ddot{\theta} = -\frac{30g}{211a}\theta$	A1		cao
	Period is $2\pi \sqrt{\frac{211a}{30g}}$	A1√	5	ft from $\ddot{\theta}$ above
				Accept $\frac{2\pi}{\sqrt{\frac{30g}{211a}}}$
	Or			sc 4 if correct except no '-' sign in lines
	C of G 6a	(M1 A1)		-,-, .
	Periodic time is $2\pi \sqrt{\frac{211a^2}{5g.6a}}$	(M1 A1)		
	$= 2\pi \sqrt{\frac{211a}{30g}}$	(A1)		
	Total		16	

www.theallpapers.com

Question	Solution	Marks	Total	Comments
Number				
4 (a)	Distance of particle below <i>B</i> is			
	$4a - a - 2a\cos\theta$	M1		
	$=3a-2a\cos\theta$	A1		
	$P.E. = -mg(3a - 2a\cos\theta)$			
	\therefore PE of system is			
	$-2mg\frac{a}{2}\cos 2\theta - mg(3a - 2a\cos\theta)$	M1		
	$= -mga(\cos 2\theta + 3 - 2\cos \theta)$	A1	4	sc 3 if energy not taken to be zero at B
(b)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = 2mga\mathrm{sin}2\theta - 2mga\mathrm{sin}\theta$	M1 A1		
	$= 0 \Rightarrow$			
	$2\sin 2\theta - 2\sin \theta = 0$	M1		
	$4\sin\theta\cos\theta - 2\sin\theta = 0$	A 1		
	$\sin\theta(2\cos\theta - 1) = 0$	AI		
	$\theta = 0 \text{ or } \frac{\pi}{3}$	A1		
	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = 4mga\cos\!2\theta - 2mga\cos\theta$	M1		
	When $\theta = 0$, this gives stable equilibrium	A1		
	When $\theta = \frac{\pi}{3}$,			
	this gives unstable equilibrium.	A1	8	
	Total		12	

MBM6 (cont)

Question	Solution	Marks	Total	Comments
Number				
and Part $5(a)$				
5(a)	A			
	2π i			
	2^{2u} $\rightarrow i$			
	2 <i>a</i>			
	C B			
	C of G by symmetry, using \mathbf{i} and \mathbf{j} as			
	shown relative to C ,			
	C of G of combined body is $\frac{3}{2}a\mathbf{i} + \frac{a}{2}\mathbf{j}$	M1 A1		
	In equilibrium position, line joining A to			
	this point is vertical			
	$\therefore \tan \phi = \frac{1}{3}$	M1 A1	4	
(b)(i)	M of I of rod about axes through A is			
	$\frac{1}{3}.3ma^2 = 4ma^2$	B1		
	M of 1 of rod BC is $(2)^2$			
	$\frac{1}{3}.3ma^2 + 3m(\sqrt{5a^2})^2 = 16ma^2$	M1A1		Condone $\frac{4}{3} . 3ma^2 + 3m(2a)^2$
		B1		For $\sqrt{5} a$
	\therefore M of I of system is $20ma^2$	A1	5	
(;;)	When AC is contical by conservation of			
(11)	energy where G is the centre of mass			
	$\sqrt{10}$			
	$\frac{1}{2}20ma^2\theta^2 = 3mga + 6mg. \frac{\sqrt{10}}{2}a$	M1A1		LHS
		M1		RHS 2 terms, one 3 <i>mga</i>
				Or RHS Change in PE of C of G
				$6mg \frac{a}{2}(1+\sqrt{10})$
				$\int \frac{1}{2} \frac{1}{1} + \sqrt{10} \int \frac{1}{10} $
	$\therefore \dot{\theta}^2 = \frac{3g(1+\sqrt{10})}{2}$	A1	5	
/····	10 <i>a</i>	.		
(111)	Vertical reaction at hinge is $Mg + Mh \theta^2$	M1		Either
	\therefore Reaction is $6m.g + 6m.\frac{\sqrt{10}}{2}a.\dot{\theta}^2$	M1		Both
	- 2	A1		
	$= 6mg + 6m. \frac{\sqrt{10}}{2}a \frac{3g(1+\sqrt{10})}{10z}$	A1	4	sc 1 for 6 <i>mg</i>
	2 10a			
	$=\frac{150+9910}{10}mg \text{ or } (15+\frac{9}{10}\sqrt{10})mg$			
	Total		18	
	TOTAL		60	

www.theallpapers.com