GCE 2005 January Series



# Mark Scheme

# Mathematics and Statistics B (MBM5)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

#### COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. Dr Michael Cresswell Director General

# Key to Mark Scheme

| M                       | mark is for              |                            | method              |
|-------------------------|--------------------------|----------------------------|---------------------|
| m                       | mark is dependent on one | or more M marks and is for | method              |
| A                       | mark is dependent on M   | or m marks and is for      | accuracy            |
| B                       | mark is independent of M | or m marks and is forme    | thod and accuracy   |
| E                       | mark is for              |                            | explanation         |
| $\checkmark$ or ft or F |                          | follow thro                | bugh from previous  |
|                         |                          |                            | incorrect result    |
| CAO                     |                          | c                          | orrect answer only  |
|                         |                          |                            |                     |
| AWRT                    |                          | anythir                    | ng which rounds to  |
| AG                      |                          | -                          | answer given        |
| SC                      |                          |                            | special case        |
| OE                      |                          |                            | or equivalent       |
|                         |                          |                            |                     |
| - <i>x</i> EE           |                          | deduct x m                 | arks for each error |
| NMS                     |                          |                            | .no method shown    |
| PI                      |                          |                            | possibly implied    |
|                         |                          |                            |                     |
| c                       |                          |                            | candidate           |
|                         |                          |                            |                     |
|                         |                          |                            | 0                   |
|                         |                          |                            |                     |

# Abbreviations used in Marking

| MC – <i>x</i> | deducted x marks for mis-copy |
|---------------|-------------------------------|
| MR – <i>x</i> |                               |
| ISW           | ignored subsequent working    |
| BOD           |                               |
| WR            | work replaced by candidate    |
| FB            |                               |

## **Application of Mark Scheme**

| No method shown:<br>Correct answer without working<br>Incorrect answer without working                                                                        |                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| More than one method/choice of solution:<br>2 or more complete attempts, neither/none<br>crossed out<br>1 complete and 1 partial attempt, neither crossed out | mark both/all fully and award the mean mark<br>rounded down<br>award credit for the complete solution only |
| Crossed out work                                                                                                                                              | do not mark unless it has not been replaced                                                                |
| Alternative solution using a correct or partially correct method                                                                                              | award method and accuracy marks as appropriate                                                             |

| Question | Solution                                                                                                                                                                                             | Marks    | Total | Comments                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|------------------------------------------|
| Number   |                                                                                                                                                                                                      |          |       |                                          |
| and Part |                                                                                                                                                                                                      |          |       |                                          |
| 1(a)     | m = 4m                                                                                                                                                                                               |          |       |                                          |
|          | Initial $\rightarrow 2u$                                                                                                                                                                             |          |       |                                          |
|          | Final $\rightarrow v \rightarrow v$                                                                                                                                                                  |          |       |                                          |
|          |                                                                                                                                                                                                      |          |       |                                          |
|          | C of momentum:                                                                                                                                                                                       |          |       |                                          |
|          | 4m.2u = (m + 4m).v<br>8m.u = 5mv                                                                                                                                                                     | M1 A1    |       |                                          |
|          | 8m.u = 5mv                                                                                                                                                                                           |          |       |                                          |
|          | $v = \frac{\delta}{2}u$                                                                                                                                                                              | A1       | 3     |                                          |
| (1.)     | $v = \frac{8}{5}u$                                                                                                                                                                                   |          | C C   |                                          |
| (b)      | Impulse = change in momentum<br>Using particle <i>P</i> :                                                                                                                                            |          |       |                                          |
|          |                                                                                                                                                                                                      |          |       |                                          |
|          | Impulse = $m \times \frac{8}{5}u$                                                                                                                                                                    | M1       |       |                                          |
|          | õ                                                                                                                                                                                                    |          |       |                                          |
|          | $=\frac{8}{2}mu$                                                                                                                                                                                     | A1       | 2     |                                          |
|          | 5                                                                                                                                                                                                    |          | -     |                                          |
| 2(z)(z)  | $\mathbf{Total}$                                                                                                                                                                                     | N/1      | 5     |                                          |
| 2(a)(i)  | $\mathbf{F} = \{ (8\mathbf{i} + \mathbf{j} - 2\mathbf{k}) + (-4\mathbf{i} + 2\mathbf{j} + 14\mathbf{k}) \} \\ = -4\mathbf{i} - 3\mathbf{j} - 12\mathbf{k}$                                           | M1<br>A1 | 2     |                                          |
| (ii)     | 41-5j-12k                                                                                                                                                                                            | AI       | 2     |                                          |
| (11)     | $\sqrt{1-1}$                                                                                                                                                                                         |          |       |                                          |
|          | Magnitude = $\sqrt{4^2 + 3^2 + 12^2}$                                                                                                                                                                | M1       |       |                                          |
|          | 10                                                                                                                                                                                                   |          | 2     |                                          |
|          | = 13                                                                                                                                                                                                 | A1√      | 2     |                                          |
| (b)      | Moments about origin                                                                                                                                                                                 | M1       |       | (Use of $\mathbf{r} \times \mathbf{F}$ ) |
|          |                                                                                                                                                                                                      | 1411     |       |                                          |
|          |                                                                                                                                                                                                      |          |       |                                          |
|          | $= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 4 \\ 8 & 1 & -2 \end{vmatrix} + \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 7 & -3 & 2 \\ -4 & 2 & 14 \end{vmatrix}$ | M1       |       | M1 for use of determinant or at least 2  |
|          | 8 1 -2   -4 2 14                                                                                                                                                                                     |          |       | terms correct in either moment           |
|          | $= (-2\mathbf{i} + 36\mathbf{j} + 10\mathbf{k}) + (-46\mathbf{i} - 106\mathbf{j} + 2\mathbf{k})$                                                                                                     | A1       |       | (either moment)                          |
|          |                                                                                                                                                                                                      | A1       |       | (second moment)                          |
|          |                                                                                                                                                                                                      |          | _     |                                          |
|          | =-48i-70j+12k                                                                                                                                                                                        | A1       | 5     |                                          |
|          | Total                                                                                                                                                                                                |          | 9     |                                          |

#### Mathematics and Statistics B Mechanics 5 MBM5 January 2005

| MBM5 (con |                                                                                      |       |       |                                                                                            |
|-----------|--------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------------------------------------------|
| Question  | Solution                                                                             | Marks | Total | Comments                                                                                   |
| Number    |                                                                                      |       |       |                                                                                            |
| and Part  |                                                                                      |       |       |                                                                                            |
| 3(a)      | Conservation of energy:                                                              |       |       |                                                                                            |
|           | $\frac{1}{2}m\left(\frac{v}{5}\right)^2 + mg2r = \frac{1}{2}mv^2$                    | M1 A1 |       |                                                                                            |
|           | $mg4r = m\frac{24}{25}v^2$ $v = 5\sqrt{\frac{gr}{6}}$                                | M1    |       |                                                                                            |
|           | $v = 5\sqrt{\frac{gr}{6}}$                                                           | A1    | 4     |                                                                                            |
| (b)(i)    | At highest point speed is $\sqrt{\frac{1}{6}gr}$                                     | B1    |       |                                                                                            |
|           | $\bigwedge^{R}$                                                                      |       |       |                                                                                            |
|           | Consider vertical forces:<br>$m\left(\sqrt{\frac{1}{2}ar}\right)^2$                  |       |       |                                                                                            |
|           | $R + \frac{m\left(\sqrt{\frac{1}{6}gr}\right)^2}{r} = mg$                            | M1    |       |                                                                                            |
|           | $R+\frac{1}{6}mg=mg$                                                                 |       |       |                                                                                            |
| ('')      | $R = \frac{5}{6}mg$                                                                  | A1    | 3     |                                                                                            |
| (ii)      | Using conservation of energy<br>$\frac{1}{2}mV^2 = \frac{1}{2}mv^2 - \frac{1}{2}mgr$ | M1    |       | Or<br>$\frac{1}{2}mV^2 = \frac{1}{2}mv^2 - \frac{1}{2}mgr$ M1                              |
|           | $= \frac{25}{12}mgr - \frac{1}{2}mgr$                                                |       |       | $\frac{mV^2}{m} = R - mg\cos 60 \text{ M1A1}$                                              |
|           | $=\frac{19}{12}mgr$                                                                  |       |       | $ \begin{array}{l} r \\ \text{Eliminate } V \\ mv^2 - mgr = Rr - mgr \cos 60 \end{array} $ |
|           | $V = \sqrt{\frac{19}{6}}gr$                                                          | A1    |       | $\frac{1}{1}$                                                                              |
|           | Resolve radially                                                                     |       |       | $\frac{25}{6}mg - mg = R - \frac{1}{2}mg$                                                  |
|           |                                                                                      |       |       | $6 \frac{mg}{R} \frac{mg}{2} \frac{mg}{R} = \frac{11}{3}mg \qquad A1$                      |
|           | $\frac{mV^2}{r} = R - mg\cos 60$                                                     | M1 A1 |       | M1 A0 if incorrect angle[ie not 60]                                                        |
|           | $\frac{19}{6}mg = R - \frac{1}{2}mg$                                                 | A1    | 5     |                                                                                            |
|           | $R = \frac{11}{3}mg$                                                                 |       | 5     |                                                                                            |
|           | Total                                                                                |       | 12    |                                                                                            |

#### MBM5 (cont)

| Question           | Solution                                                                                                        | Marks | Total | Comments                                                                               |
|--------------------|-----------------------------------------------------------------------------------------------------------------|-------|-------|----------------------------------------------------------------------------------------|
| Number<br>and Part |                                                                                                                 |       |       |                                                                                        |
| 4(a)               | Distance perpendicular to slope:                                                                                |       |       |                                                                                        |
|                    | $S = V\sin\theta t - \frac{1}{2}g\cos\alpha t^2$                                                                | M1    |       |                                                                                        |
|                    | Strikes plane again when $s = 0$ ,<br>$t = \frac{2v\sin\theta}{g\cos\alpha}$<br>[ t = 0 not required]           | A1    |       |                                                                                        |
|                    | Distance down slope:<br>$s = V\cos\theta t + \frac{1}{2}g\sin\alpha t^2$                                        | M1 A1 |       |                                                                                        |
|                    | $= V\cos\theta \frac{2v\sin\theta}{g\cos\alpha} + \frac{1}{2}g\{\frac{2v\sin\theta}{g\cos\alpha}\}^2\sin\alpha$ | M1    |       |                                                                                        |
|                    | $=\frac{2v^2\cos\theta\sin\theta}{g\cos\alpha}+\frac{2v^2\sin^2\theta}{g\cos^2\alpha}\sin\alpha$                |       |       |                                                                                        |
|                    | $=\frac{2V^2\sin\theta[\cos\theta\cos\alpha+\sin\theta\sin\alpha)}{g\cos^2\alpha}$                              |       |       |                                                                                        |
|                    | $=\frac{2V^2\sin\theta\cos(\theta-\alpha)}{g\cos^2\alpha}$                                                      | A1    | 6     |                                                                                        |
| (b)                | Range is<br>$\frac{2V^2}{g\cos^2\alpha} \frac{1}{2} [\sin(2\theta - \alpha) + \sin\alpha]$                      | M1 A1 |       | <b>Or</b> by differentiation<br>Max when                                               |
|                    | This is a maximum when $sin(2\theta - \alpha)$ is a maximum which is 1<br>Hence maximum range is                | M1    |       | $\theta = \frac{\alpha}{2} + \frac{\pi}{4}$ M1 A1<br>Substitution to give answer M1 A1 |
|                    | $\frac{V^2}{g\cos^2\alpha}(1+\sin\alpha)$                                                                       | A1    | 4     |                                                                                        |
|                    | Total                                                                                                           |       | 10    |                                                                                        |

### MBM5 (cont)

| Question | Solution                                                                                  | Marks | Total | Comments                                |
|----------|-------------------------------------------------------------------------------------------|-------|-------|-----------------------------------------|
| Number   |                                                                                           |       |       |                                         |
| and Part |                                                                                           |       |       |                                         |
| 5(a)     | Conservation of linear momentum:                                                          |       |       |                                         |
|          | $(m+\delta m)(v+\delta v) - mv - \delta m.v =$                                            | M1    |       | Needs at least 3 of the 5 terms correct |
|          | $-mg\delta t + M_0g\delta t$                                                              | A1    |       |                                         |
|          | $m\delta v = M_0 g\delta t - mg\delta t$                                                  |       |       |                                         |
|          | $m\frac{\mathrm{d}v}{\mathrm{d}t} = M_0g - mg$                                            |       |       |                                         |
|          | $m = M_0 - \lambda M_0 t$                                                                 | B1    |       |                                         |
|          | $(M_0 - \lambda M_0 t) \frac{\mathrm{d}v}{\mathrm{d}t} = M_0 g - (M_0 - \lambda M_0 t) g$ |       |       |                                         |
|          | $(1 - \lambda t)\frac{\mathrm{d}v}{\mathrm{d}t} = \lambda gt$                             | M1    |       |                                         |
|          | $\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\lambda gt}{1 - \lambda t}$                      | A1    | 5     |                                         |
| (b)      | $v = \int (-g + \frac{g}{1 - \lambda t})  \mathrm{d}t$                                    | M1    |       |                                         |
|          | $v = -gt - \frac{g}{\lambda}\ln(1-\lambda t) + c$                                         | A1    |       |                                         |
|          | When $t = 0$ , $v = 0$ $\therefore c = 0$                                                 |       |       |                                         |
|          | $\therefore v = -gt - \frac{g}{\lambda}\ln(1-\lambda t)$                                  | A1    |       |                                         |
|          | When $m = \frac{1}{2}M_0$                                                                 |       |       |                                         |
|          | $\lambda t = \frac{1}{2}$                                                                 |       |       |                                         |
|          | $\lambda t = \frac{1}{2}$ $t = \frac{1}{2\lambda}$                                        | M1    |       |                                         |
|          | $\therefore v = \frac{g}{\lambda} \ln 2 - \frac{g}{2\lambda}$                             | A1    | 5     |                                         |
|          | Total                                                                                     |       | 10    |                                         |

| Our and an         | t)<br>Solution                                                                               | Maulta | Tatal | Commonto                                                |
|--------------------|----------------------------------------------------------------------------------------------|--------|-------|---------------------------------------------------------|
| Question<br>Number | Solution                                                                                     | Marks  | Total | Comments                                                |
| and Part           |                                                                                              |        |       |                                                         |
| 6(a)               | Substituting $x = Ae^{nt}$ into CF                                                           |        |       |                                                         |
| 0( <b>u</b> )      | $n^2 + 6n + 10 = 0$                                                                          |        |       |                                                         |
|                    | $-6 \pm \sqrt{36 - 40}$                                                                      |        |       |                                                         |
|                    | $n = \frac{-6 \pm \sqrt{36 - 40}}{2}$                                                        |        |       |                                                         |
|                    | $= -3 \pm i$                                                                                 | M1     |       |                                                         |
|                    | $\therefore CF \text{ is } x = e^{-3t}(A\cos t + B\sin t)$                                   | M1A1   |       |                                                         |
|                    | PI: $x = C\sin 3t + D\cos 3t$                                                                | M1     |       | M1 only for DI spation if only Cain2t on                |
|                    | dx = 2G + 2G + 2D + 2G                                                                       |        |       | M1 only for PI section if only Csin3t or<br>Dcos3t used |
|                    | $\frac{\mathrm{d}x}{\mathrm{d}t} = 3C\cos 3t - 3D\sin 3t$                                    |        |       |                                                         |
|                    |                                                                                              |        |       |                                                         |
|                    | $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -9C\sin 3t - 9D\cos 3t$                              |        |       |                                                         |
|                    | Substituting into                                                                            |        |       |                                                         |
|                    |                                                                                              |        |       |                                                         |
|                    | $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + 10x = 325\sin 3t$ |        |       |                                                         |
|                    | $-9C\sin 3t - 9D\cos 3t + 18C\cos 3t$                                                        |        |       |                                                         |
|                    | $-18D\sin 3t + 10C\sin 3t + 10D\cos 3t$                                                      | M1A1   |       |                                                         |
|                    | $= 325\sin 3t$                                                                               |        |       |                                                         |
|                    | $(\sin t)  C - 18D = 325$                                                                    |        |       |                                                         |
|                    | (cost) $D + 18C = 0$<br>325C = 325                                                           |        |       |                                                         |
|                    | C = 1                                                                                        | B1     |       |                                                         |
|                    | D = -18                                                                                      | B1     |       |                                                         |
|                    | $\therefore PI \text{ is } x = \sin 3t - 18\cos 3t$                                          |        |       |                                                         |
|                    | $x = e^{-3t}(A\cos t + B\sin t) + (\sin 3t - 18\cos 3t)$                                     |        |       |                                                         |
|                    | When $x = 0, t = 0$                                                                          |        |       |                                                         |
|                    | $\Rightarrow 0 = A - 18$                                                                     | D1     |       |                                                         |
|                    | $\Rightarrow A = 18$                                                                         | B1     |       |                                                         |
|                    | $\frac{\mathrm{d}x}{\mathrm{d}t} = -3\mathrm{e}^{-3t}(A\cos t + B\sin t) +$                  |        |       |                                                         |
|                    |                                                                                              |        |       |                                                         |
|                    | $e^{-3t}(B\cos t - A\sin 3t) + 3\cos 3t + 54\sin 3t$                                         |        |       |                                                         |
|                    | When $t = 0$ , $\frac{dx}{dt} = 0$                                                           |        |       |                                                         |
|                    | $\Rightarrow 0 = -3A + B + 3$                                                                |        |       |                                                         |
|                    | $\Rightarrow 03A + B + 3$ $B = 51$                                                           | B1     |       |                                                         |
|                    | $\therefore x = (18 \cos t + 51 \sin t)e^{-3t} + $                                           |        |       | Accept $x = 54e^{-3t}\cos(t - 1.232)$                   |
|                    | $\sin^2 t - 18\cos^2 t$                                                                      | B1     | 11    | $+(\sin 3t - 18\cos 3t)$                                |
|                    |                                                                                              |        |       | allow 54, 54.1, 54.08                                   |
| (b)                | When t is large, $x \approx \sin 3t - 18\cos 3t$                                             | DI     |       |                                                         |
|                    | This is periodic                                                                             | B1     |       |                                                         |
|                    | with period $\frac{2\pi}{2}$                                                                 | B1     |       |                                                         |
|                    | 3                                                                                            |        | ~     | 1 1 225                                                 |
|                    | and amplitude $5\sqrt{13}$                                                                   | B1     | 3     | Accept $\sqrt{325}$                                     |
|                    | Total                                                                                        |        | 14    |                                                         |