

Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBM5

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC-x	deducted x marks for miscopy
MR-x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question	Solution	Marks	Total	Comments
Number				
and part	4			
	Gain in momentum = $\int F dt$	M1		
	$= \left[-3e^{-2t} \right]_0^4$	A1 M1	,	M1 for limits or $+c$
	$= 3 - 3 e^{-8}$	A1	4	
2 (.)	Total		4	
2 (a)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} -2\\2\\-1 \end{pmatrix}$	B1		
	$\mathbf{F} = \lambda \begin{pmatrix} -2\\2\\-1 \end{pmatrix}$	M1		
	Considering magnitudes $3\lambda = 21$ $\lambda = 7$ (-14)	A1		
	$\mathbf{F} = \begin{pmatrix} -14 \\ 14 \\ -7 \end{pmatrix}$	A1	4	
(b)	Work done $= \mathbf{F} \cdot \mathbf{s}$	M1		
	$ = \begin{pmatrix} -14 \\ 14 \\ -7 \end{pmatrix} \bullet \begin{pmatrix} 5 \\ 1 \\ -10 \end{pmatrix} $	M1		For s
	= 14 joules	A1 B1	4	B1 for joules
	Total		8	

Question	Solution	Marks	Total	Comments
Number				
and part	I at analysister at a sign Charac			
3	Let velocity at point S be v			
	$S \stackrel{R}{\underset{mg}{\bigvee}} \theta$			
(a)	Conservation of energy			
	$\frac{1}{2}mv^2 + mga(1+\cos\theta) = \frac{1}{2}mu^2$	M1 A1		
	$v^2 = u^2 - 2ga(1 + \cos\theta)$ $E = ma \text{ and follow}$			
	F = ma radially; ²			
	$R + mg\cos\theta = \frac{mv^2}{a}$	M1 A1		
	$R = \frac{mu^2}{a} - 2mg(1 + \cos\theta) - mg\cos\theta$	M1		
	$R = \frac{mu^2}{a} - 3mg\cos\theta - 2mg$	A1	6	
(b)	For ball to complete the revolution,			
	$R \ge 0$ at top of track	M1		
	$R = \frac{mu^2}{a} - 5mg \ge 0$			
	$u \ge \sqrt{5ag}$	A1	2	
	Total		8	

Question	Solution	Marks	Total	Comments
Number				
and part	Distance perpendicular to slope:	M1		
	$s = V \sin 15 t - \frac{1}{2} g \cos 30 t^2$	A1		
	Strikes slope when $s = 0$	AI		
	1			4V sin 15
	$t = \frac{2V \sin 15}{g \cos 30} [t = 0 \text{ not required}]$	M1 A1		Or $\frac{4V\sin 15}{\sqrt{3}g}$
	Distance along slope	M1		. 3
	$s = V \cos 15 t + \frac{1}{2} g \sin 30 t^2$	A1		
	∴Range down slope is	M1		
	$V\cos 15. \frac{2V\sin 15}{g\cos 30} + \frac{1}{2}g\sin 30. \frac{4V^2\sin^2 15}{g^2\cos^2 30}$			
	$= \frac{2V^2 \sin 15 \cos 15}{g \cos 30} + \frac{2V^2 \sin 30 \sin^2 15}{g \cos^2 30}$	A1		
	_	711		
	$= \frac{2V^2 \sin 15}{g \cos^2 30} (\cos 30 \cos 15 + \sin 30 \sin 15)$			
	Range = $\frac{2V^2 \sin 15 \cos 15}{g \cos^2 30} = \frac{V^2 \sin 30}{g \cos^2 30}$	M1		
	$\frac{1}{2V^2}$			
	$=\frac{2V^2}{3g}$	A1	10	For exact answer
				Need to see use of $\sin 30 = 2 \sin 15 \cos 15$
				$\mathbf{sc} \ 9 \ \text{for} \ \frac{\sqrt{3} + 4 \sin^2 15}{3g} = \frac{2V^2}{3g}$
				without justification
	Total		10	Timout Justification

Question	Solution	Marks	Total	Comments
Number				
and part				
5 (a)	$m = 10\ 000 - 200t$	M1	1	Accept 10 000 + 200t
(b)	Initial			
	$m \rightarrow v$			
	Final			
	$m + \delta m \qquad -\delta m$ $\rightarrow v + \delta v \qquad \rightarrow v - 600$			
	$\rightarrow V + \partial V \rightarrow V - \partial U$ Conservation of linear momentum	M1		
	$mv = (m + \delta m)(v + \delta v) - \delta m(v - 600)$	A1		
	$mv = (m + \epsilon m)(v + \epsilon v) = \delta m(v - 600)$ $mv = mv + v\delta m + m\delta v - v\delta m + 600\delta m$	111		
	(to first order of δ terms)			
	$0 = m\delta v + 600\delta m$			
	$\therefore 0 = m \frac{\mathrm{d}v}{\mathrm{d}t} + 600 \frac{\mathrm{d}m}{\mathrm{d}t}$	Λ 1		
	$1.0 - m \frac{dt}{dt} + 000 \frac{dt}{dt}$	A1		
	$\frac{\mathrm{d}m}{\mathrm{d}t} = -200$	B1		
	$\Rightarrow :: m \frac{\mathrm{d}v}{\mathrm{d}t} = 120\ 000$	B1		
	$(10\ 000 - 200t)\ \frac{\mathrm{d}v}{\mathrm{d}t} = 120\ 000$	M1		
	$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{600}{50 - t}$	A1	7	
(c)	Maximum acceleration is when t is			
	greatest (and fuel is still burning)	M1		
	$\therefore t = \frac{7000}{200} = 35$	B1		
	.: Maximum acceleration is			
	$\frac{600}{15} = 40 \text{ m s}^{-2}$	A1	3	
	Total		11	

Question	Solution	Marks	Total	Comments
Number				
and part				
6 (a)	$T_{AP} = \frac{\lambda . 3a}{4a} = \frac{3}{4} \lambda$ $T_{PB} = 4mg. \frac{a}{2a} = 2mg$ Using $F = ma$ vertically $mg + T_{PB} = T_{AP}$	B1 M1		Either
	$\therefore mg + 2mg = \frac{3}{4}\lambda$	A1		
6 (b) (i)	$\lambda = 4mg$ When particle is moved a distance x below the equilibrium position, forces acting on it are	A1	4	
	$mg, T_{AP} = \frac{\lambda . (3a + x)}{4a} = \frac{mg(3a + x)}{a},$ $T_{PB} = 4mg. \frac{(a - x)}{2a} = \frac{2mg}{a} (a - x)$	M1		
	and resistance $\frac{1}{5}mk\dot{x}$ [forces 2 and 4 are upwards] Using $F = ma$ vertically downwards	M1		All four forces
	$\begin{split} m\ddot{x} &= mg + T_{PB} - T_{AP} - \frac{1}{5}mk\dot{x} \\ m\ddot{x} &= \end{split}$	m1		Dependent on both M1 above
	$mg + \frac{2mg}{a}(a-x) - \frac{mg(3a+x)}{a} - \frac{1}{5}mk\dot{x}$ $\ddot{x} - g - \frac{2g}{a}(a-x) + \frac{g(3a+x)}{a} + \frac{1}{5}k\dot{x} = 0$	A1		
	$\ddot{x} + \frac{1}{5}k\dot{x} + \frac{3gx}{a} = 0$	A1		
	$10\frac{d^2x}{dt^2} + 2k\frac{dx}{dt} + 5k^2x = 0$	A1	6	

Question	Solution	Marks	Total	Comments
Number				
and part				
6 (b) (ii)	Substituting $x = Ae^{nt}$,			
	$10n^2 + 2kn + 5k^2 = 0$			
	$n = \frac{-2k \pm \sqrt{4k^2 - 200k^2}}{20}$	M1		
	$=\frac{1}{10}(-k\pm7k\mathrm{i})$	A1		
	$-\frac{k}{t}$	M1		
	$x = e^{-\frac{k}{10}t} (A\cos\frac{7}{10}kt + B\sin\frac{7}{10}kt)$	A1√		
	When $t = 0$, $x = \frac{a}{2}$, $A = \frac{a}{2}$	B1		
	Differentiating			
	$\frac{dx}{dt} = -\frac{k}{10} e^{-\frac{k}{10}t} (A\cos\frac{7}{10}kt + B\sin\frac{7}{10}kt)$			
	$+ e^{-\frac{k}{10}t} \left(-\frac{7}{10} kA \sin \frac{7}{10} kt + \frac{7}{10} kB \cos \frac{7}{10} kt \right)$	M1 A1√		
	When $t = 0$, $\frac{dx}{dt} = 0$, $0 = -\frac{k}{10}A + \frac{7}{10}kB$	M1		
	$B = \frac{a}{14}$			
	$x = \frac{a}{14} e^{-\frac{k}{10}t} (7\cos\frac{7}{10}kt + \sin\frac{7}{10}kt)$	A1	9	
	Total		19	
	TOTAL		60	