

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBM4 Mechanics 4

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
Ε	mark is for	explanation
$\sqrt{\mathbf{or}}$ ft or F		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
<i>-x</i> ee		deduct <i>x</i> marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC - x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

No method shown:				
Correct answer without working	mark as in scheme			
Incorrect answer without working	zero marks unless specified otherwise			
More than one method / choice of solution:				
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down			
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only			
Crossed out work	do not mark unless it has not been replaced			
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate			
<u> </u>				

Q	Solution	Marks	Total	Solution
1(a)	Initial $\rightarrow 3u \qquad \leftarrow u$			
	6 <i>m</i> 2 <i>m</i>			
	Final $\rightarrow V_1 \rightarrow V_2$			
	C of momentum $6m^2u$, $2mu = 6m^2V + 2m^2V$	M1		
	$6m.5u - 2m.u - 6m.v_1 + 2m.v_2$ $16u = 6V_1 + 2V_2$	A 1		
	Restitution $\frac{1}{2}(3u + u) = V_2 - V_1$	M1A1		
	$u = V_2 - V_2$			
	$14 u = \frac{1}{8} V_1$	M1		
	$V_1 = \frac{7}{4}u$	A1	6	
	- 4		-	
(b)	$V_2 = u + \frac{7}{4}u$	M1		
	$=\frac{11}{4}u$	A1	2	
			8	
2	Resolve along <i>AB</i>		-	
	$R\cos 30 = Q\cos 45$	M1A1		
	Resolve perpendicular to AB			
	$R\sin 30 + Q\sin 45 = P$	M1A1		
	$\frac{R}{2} + \frac{Q}{\sqrt{2}} = 4\sqrt{2}$			
	$R\sqrt{3}$ O			If just substitute siven D into one of
	$\frac{1}{2} = \frac{2}{\sqrt{2}}$			resolve eq ⁿ s, M1 A1 only.
	$\therefore \frac{R}{2} + \frac{R\sqrt{3}}{2} = 4\sqrt{2}$	M1		
	2 2 $R(1 + \sqrt{2}) = 8\sqrt{2}$			
	$K(1 + \sqrt{3}) = 8\sqrt{2}$			
	$R = \frac{8\sqrt{2}}{1+\sqrt{3}} = \frac{8\sqrt{2}(\sqrt{3}-1)}{2}$			
	$R = 4(\sqrt{6} - \sqrt{2})$	A 1		
	$Q = \frac{\sqrt{3}}{4(\sqrt{6} - \sqrt{2})}$			
	$\sum_{i=1}^{\infty} \sqrt{2} \left[\frac{1}{\sqrt{2}} \sqrt{2} \right]$			
	$= 4(3-\sqrt{3})$	A1	7	
	Total		7	

Mathematics and Statistics B Mechanics 4 MBM4 June 2005

MBM4 (cont)

3(a) $\mathbf{r}_{Crel H} = \mathbf{r}_{C} - \mathbf{r}_{H}$ $= \begin{pmatrix} -30 \\ -23 \\ -0.3 \end{pmatrix}$ (b)(i) $\mathbf{V}_{Crel H} = \mathbf{v}_{C} - \mathbf{v}_{H}$ $= \begin{pmatrix} 4 \\ -58 \\ 0 \end{pmatrix} - \begin{pmatrix} -29 \\ -90 \\ -0.1 \end{pmatrix} = \begin{pmatrix} 33 \\ 32 \\ 0.1 \end{pmatrix}$ A1 1 $= \begin{pmatrix} -30 \\ -23 \\ -0.3 \end{pmatrix} + i \begin{pmatrix} 33 \\ 32 \\ 0.1 \end{pmatrix}$ M1 $= \begin{pmatrix} -30 + i \begin{pmatrix} 33 \\ 22 \\ -0.3 \end{pmatrix}$ M1 $= \begin{pmatrix} -30 + i \begin{pmatrix} 33 \\ 22 \\ -0.3 \end{pmatrix}$ M1 $= \begin{pmatrix} -30 + 33i \\ -23 + 2i \end{pmatrix}$ A1 $= \begin{pmatrix} -30 + 33i \\ -23 + 2i \end{pmatrix}$ A1 $= \int (-30 + 33i)^{2} + (-23 + 32i)^{2} + \int (-33 + 2i)^{2} + \int (-33 + 2i)^{2} + \int (-33 + 0.1i)^{2} + \int (-33 + 0.1i)^{2}$	Q	Solution	Marks	Total	Comments
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3(a)	$\mathbf{r}_{C \operatorname{rel} H} = \mathbf{r}_{C} - \mathbf{r}_{H}$ $= \begin{pmatrix} -30\\ -23 \end{pmatrix}$	B1	1	
(ii) At time t, $\mathbf{r}_{C \operatorname{rel} H} = \begin{pmatrix} -30 \\ -23 \\ -0.3 \end{pmatrix} + t \begin{pmatrix} 33 \\ 32 \\ 0.1 \end{pmatrix}$ $= \begin{pmatrix} -30 + 33t \\ -23 + 32t \\ 0.1 + 2 \end{pmatrix}$ Al $= \sqrt{-(-30 + 33t)^2 + (-23 + 32t)^2 + (-0.3 + 0.1t)^2} + (-0.3 + 0.1t)^2 + (-0.3 +$	(b)(i)		M1 A1	2	
$= \begin{pmatrix} -30 + 33t \\ -23 + 32t \\ -0.3 + 0.1t \end{pmatrix}$ $\therefore \text{ Distance apart} = \sqrt{\left\{(-30 + 33t)^2 + (-23 + 32t)^2 + (-0.3 + 0.1t)^2\right\}}$ $(\text{iii)} S^2 = (-30 + 33t)^2 + (-23 + 32t)^2 + (-0.3 + 0.1t)^2 +$	(ii)	At time t, $\mathbf{r}_{C \text{ rel } H} = \begin{pmatrix} -30 \\ -23 \\ -0.3 \end{pmatrix} + t \begin{pmatrix} 33 \\ 32 \\ 0.1 \end{pmatrix}$	M1		
$\begin{array}{ c c c c c c } \vdots & \vdots $		$= \begin{pmatrix} -30+33t\\ -23+32t\\ -0.3+0.1t \end{pmatrix}$	A1		
(iii) $S^2 = (-30+33t)^2 + (-23+32t)^2 + (-0.3+0.1t)^2 + (-0.3+0.1t)^2 + (-0.3+0.1t)^2 + (-0.3+0.1t) = 0$ when $3452.06 = 4226.02 t$ M1 t = 0.8168 A1 Time is 12. 49 A1 5 (iv) At 1pm, $S = \sqrt{3^2 + 9^2 + 0.2^2} = (-0.3+0.1t) + (-0.3+0$:. Distance apart = $\sqrt{\{(-30+33t)^2 + (-23+32t)^2 + (-0.3+0.1t)^2\}}$	M1 A1	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(iii)	$S^{2} = (-30+33t)^{2} + (-23+32t)^{2} + (-0.3+0.1t)^{2}$ $\frac{dS^{2}}{dt} = 66(-30+33t) + 64(-23+32t) + 64(-23+32t)$	M1		
(iv) At 1pm, $S = \sqrt{3^2 + 9^2 + 0.2^2}$ $= \sqrt{90.04}$ = 9.4889 Which is less than 10 miles A1 2		0.2(-0.3+0.1t) = 0 when 3452.06 = 4226.02 t t = 0.8168 Time is 12. 49	AI M1 A1 A1	5	
= 9.4889 Which is less than 10 miles A1	(iv)	At 1pm, $S = \sqrt{3^2 + 9^2 + 0.2^2}$ = $\sqrt{90.04}$	M1		
		= 9.4889 Which is less than 10 miles	A1	2	

Q	Solution	Marks	Total	Comments
4(a)	Moments about <i>B</i> for whole system	M1		
	$20 l = P \cdot l \cos 80$	A1		
	P = 115 N	A1	3	
(b)	Resolve vertically for the whole system			
	T = 135 N	M1A1		
	Poselve verticelly at P			
	$\frac{T-T}{1000000000000000000000000000000000000$	M1		
	T = 125 m 80 T = 127 N		4	
	$I_2 = 137$ in	AI	4	
(c)	Resolve horizontally at <i>B</i>			
(0)	$T_1 = T_2 \cos 80$	M1		
	$T_1 = 23.8 \text{ N}$	A1	2	
	Total		9	
5(a)(i)	Velocities parallel to the wall	M1		
	$2 u \cos \theta = 3u \cos 60$	A1		
	$\cos \theta = \frac{3}{4}$	A1	3	
(ii)	Restitution : $3u \sin 60 \cdot e = 2 u \sin \theta$	M1A1		
	$2\sin\theta$			
	$e = \frac{1}{3\sin 60}$			
	= 0.509	A1	3	
(iii)	Angle is $60 + 41.4$	M1		
	= 101.4	A1	2	
		N (1		
(b)	Impulse = change of momentum which is	MI		
	perpendicular to the wall	M 1		
	$= m.3u \sin 60 + m.2u \sin \theta$		2	Needs + for second M1
	= 3.92mu	AI	3	
	Total		11	

MBM4 (cont)

MBM4 (cont)

Q	Solution	Marks	Total	Comments
6(a)	If \overline{x} is the distance of the centre of mass			
	from the base	M1		
	Moments about plane of the base $\pi r^2 2rr$, $\rho + \frac{1}{2}\pi r^2 H(2r + \frac{H}{2}) 3\rho$			
	$=(\pi r^{2} 2r^{2} + 1)\pi r^{2} H^{2} r^{2}$	MIAI		
	$-(\pi r . 2r\rho + \frac{1}{3}\pi r H.5\rho) x$	AI		
	$2r^2 + 2Hr + \frac{H^2}{4} = (2r + H) \overline{x}$	m1		Dep both M1
	$\overline{x} = \frac{8r^2 + 8Hr + H^2}{4(2r+H)}$	A1	6	
(b)	If on the point			
	of toppling			
	$\tan\theta = \frac{1}{5} = \frac{r}{x}$			
	$8r^2 + 8Hr + H^2$	M1		for $\frac{r}{5}$ or $5r$ = result in (a)
	$\therefore 5r = \frac{6r + 6Hr + H}{4(2r+H)}$	A1		5
	$40r^2 + 20rH = 8r^2 + 8rH + H^2$	M1		
	$32r^2 + 12 rH - H^2 = 0$	A 1		
	$H^2 - 12 rH - 32r^2 = 0$	AI		
	$H = \frac{12 \pm \sqrt{144 + 128}}{2} r$			
	$= (6+2\sqrt{17})r$			
	$= (6 \pm 2\sqrt{17})^{r}$	Al	5	
	$-(0+2\sqrt{17})7$		-	
	Tota		11	
	TOTAL		60	