GCE 2004 June Series

Mark Scheme

Mathematics and Statistics B *MBM4*

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 0161 953 1170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors
COPYRIGHT AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered

within the centre.

Set and published by the Assessment and Qualifications Alliance.

charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 $6\mathrm{EX}$.

Dr Michael Cresswell Director General

Key to Mark Scheme

3.6	1 ' C	.1 1
M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
$\sqrt{\text{or ft or F}}$		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
–x ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC-x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

No	met	hod	sh	own:
----	-----	-----	----	------

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise
More than one method / choice of solution:	
2 or more complete attempts, neither/none crossed out	mark both/all fully and award the mean mark rounded down
1 complete and 1 partial attempt, neither crossed out	award credit for the complete solution only
Crossed out work	do not mark unless it has not been replaced
Alternative solution using a correct or partially correct method	award method and accuracy marks as appropriate

Mathematics and Statistics B Mechanics 4 MBM4 June 2004

Question Number	Solution	Marks	Total	Comments
and Part				
1()	$\mathbf{F} = -\left\{ \begin{pmatrix} 1 \\ -5 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ -7 \\ -6 \end{pmatrix} \right\}$	M1 M1		[- sign]
	$= \begin{pmatrix} -3\\12\\4 \end{pmatrix}$	A1	3	
(b)	Magnitude = $\sqrt{(-3)^2 + 12^2 + 4^2}$	M1		
	= 13	A1√	2	
	Total		5	
2	Dimension of a force is MLT ⁻²	B1		
	From Hooke's law; $\lambda = \frac{lT}{x}$	B1		
	$= \frac{L \times MLT^{-2}}{L}$ $= MLT^{-2}$	M1		
	L $-MT^{-2}$	Λ1	4	
	- ML1 Total	A1	4 4	
3	Total		-	
	Resolve along BC : $T_2 = 10g \cos 30$ $T_2 = 5\sqrt{3} g \text{ or } 84.9 \text{ N}$ Resolve along AC : $T_1 + 10g \sin 30 = 0$ $T_1 = -5g \text{ or } -49 \text{ N}$ AC is in compression. BC is in tension.	M1 A1 M1 A1 B1 B1	6	Dependent on correct working Or Resolve vertically $T_1\cos 60 + 10g = T_2\cos 30$ M1 Horizontally $T_2\cos 30 + T_1\sin 60 = 0$ M1
	Total		6	

Question	Solution	Marks	Total	Comments
Number				
and Part				
4(a)	Velocity of Q is $2u$			
	Impulse = $3m.2u$	M1		
	= 6 <i>mu</i>	A1	2	
b(i)	Initial $\rightarrow 2u$			
	Q 3m R 5m			
	Final $\rightarrow V$			
	C of momentum $3m.2u = 5mV$	M1A1		
	$V = \frac{6}{5}u$	A1	3	
(ii)	Restitution $e.2u = V$	M1		
	$\therefore e = \frac{3}{5}$	A1	2	
(iii)	Before P collides with Q again,			
, ,	P travels distance a at speed $2u$	M1		
	$\therefore \text{ Time} = \frac{a}{2u}$	A1	2	
	24			
(c)	After impact velocity of B is V			
	Conservation of momentum $mu = MV$			
	Restitution $eu = V$	B1		
	eMu = MV = mu			
	$e \leq 1$	M1		
	$m \le M$	A1	3	
	Total		12	

Question	Solution	Marks	Total	Comments
Number				
and Part				
5(a)	$\mathbf{R}_{B \text{ rel } P} = \mathbf{r}_B - \mathbf{r}_P$			
	$= \begin{pmatrix} 11\\6\\0 \end{pmatrix} - \begin{pmatrix} 39\\-7\\0.2 \end{pmatrix}$	M1		
	$= \begin{pmatrix} -28\\13\\-0.2 \end{pmatrix}$	A1	2	$\mathbf{sc1} \text{ for } \begin{pmatrix} 28 \\ -13 \\ 0.2 \end{pmatrix}$
(b)	$\mathbf{V}_{B \text{ rel } P} = \mathbf{v}_B - \mathbf{v}_P$	M1		
				(-78)
	$= \begin{pmatrix} 3\\4\\0 \end{pmatrix} - \begin{pmatrix} -75\\40\\-0.1 \end{pmatrix} = \begin{pmatrix} 78\\-36\\0.1 \end{pmatrix}$	A1	2	$ \begin{array}{c c} \mathbf{sc1} & \mathbf{for} \begin{pmatrix} -78 \\ 36 \\ -0.1 \end{pmatrix} \end{array} $
(c)	At time t_1 , $\mathbf{r}_{B \text{ rel } P} = \begin{pmatrix} -28 \\ 13 \\ -0.2 \end{pmatrix} + t \begin{pmatrix} 78 \\ -36 \\ 0.1 \end{pmatrix}$	M1		
	$= \begin{pmatrix} -28 + 78t \\ 13 - 36t \\ -0.2 + 0.1t \end{pmatrix}$	A1√		
	::Distance apart	M1		C111 in (1)
	$= \sqrt{(-28+78t)^2 + (13-36t)^2 + (-0.2+0.1t)^2}$	A1√	4	Could be seen in (d)
(d)	When distance is 1 km, $(-28+78t)^2 + (13-36t)^2 + (-0.2+0.1t)^2 = 1$	M1		
	$953.04 - 5304.04t + 7380.01t^2 = 1$	A1		
	$7380.01t^2 - 5304.04t + 952.04 = 0$	M1		
	t = 0.3708 or 0.3478 [hours]	A1		
	Time is 20.9 and 22.2 minutes	A1	5	Accept 20.87
	Total		13	

Question	Solution	Marks	Total	Comments
Number and Part				
6(a)	Ball leaves wall at an angle of 15°	B1		
	C of momentum along the wall:			
	$u\cos 30 = v\cos 15$	M1 A1		
	$\therefore v = \frac{u \cos 30}{1.5}$			
	cos 15 Restitution: $eu sin 30 = v sin 15$	M1		
		IVI I		
	$\therefore e \sin 30 = \frac{\cos 30 \sin 15}{\cos 15}$			
	$e = \frac{\cos 30 \sin 15}{\cos 2}$			
	$\sin 30 \cos 15$			
	= 0.464	A1	5	
(b)	KE before impact = $\frac{1}{2} mu^2$			
	After impact = $\frac{1}{2} m \left(\frac{u \cos 30}{\cos 15} \right)^2$			
	$=0.4019mu^2$	B1		
	.: Percentage loss in KE is $\frac{0.098}{0.5} \times 100$	M1		Dependent on B1
	= 19.6%	A1	3	Accept 19.5 or 19.7
(c)	Impulse = change in momentum	M1		
	perpendicular to the wall			
	$= mu \sin 30 + mv \sin 15$ = $mu(0.5 + 0.232)$	m1		+
	$= 0.732mu \text{ or } \frac{1}{2}(1+e)mu$	A1	3	Accept $mu(\sin 30 + \cos 30 \tan 15)$
	2 (- 1 -)			
	Total		11	
	1 Otal		11	

Question	Solution	Marks	Total	Comments
Number				
and Part	Mass of cylinder is $\pi(r)^2 l. \rho = \pi r^2 l \rho$	B1		Condone not using ρ as long as 6 used
,	Wass of cylinder is $M(r)$ i.p – M ip	D1		Condone not using ρ as long as θ used
	Mass of cuboid is $(2r)^2 .r6\rho$	B1		
	$=24r^3\rho$			
	Taking moments about A(at point of toppling)	M1		
	$24r^3\rho\left(\frac{r}{2}\sin\alpha-r\cos\alpha\right)$	M1 A1		
	$+ \pi r^2 l \rho \left\{ \left(\frac{l}{2} + r \right) \sin \alpha - r \cos \alpha \right\} = 0$	M1A1		
	$12r^2\tan\alpha - 24r^2 + \pi \frac{l^2}{2}\tan\alpha \dots$	M1		
	$\dots + \pi r l \tan \alpha - \pi r l = 0$ $\pi l^2 - 6\pi r l - 168 r^2 = 0$	A1	9	
	On using control of quavity			
	Or using centre of gravity Mass of cylinder is $\pi(r)^2 l \cdot \rho = \pi r^2 l \rho$	(B1)		
	Mass of cuboid is $(2r)^2 . r6\rho = 24r^3\rho$ Let \overline{x} be distance of C of G from base of trophy	(B1)		
	Taking moments about plane of base $24r^3\rho \frac{r}{2} + \pi r^2 l\rho (\frac{l}{2} + r)$			
	$= \{24r^3\rho + \pi r^2l\rho \} \overline{x}$	(M1) (A1)		
	$12r^2 + \frac{\pi}{2}l^2 + \pi r l = \{24r + \pi l\} \overline{x}$	(M1)		
	$\bar{x} = \frac{12r^2 + \frac{\pi}{2}l^2 + \pi rl}{24r + \pi l}$	(A1)		
	If, on point of toppling, C of G is vertically above A	(M1)		
	$\bar{x} \sin \alpha = r \cos \alpha$			
	$(24r^2 + 2\pi rl + \pi l^2) \tan \alpha = 48r^2 + 2\pi rl$	(M1)		
	$6r^2 + \frac{1}{2}\pi rl + \frac{1}{4}\pi l^2 = 48r^2 + 2\pi rl$			
	$\pi l^2 - 6\pi r l - 168 r^2 = 0$	(A1)	0	
	Total		9	
	TOTAL	Ì	60	