

Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBM4

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and wales 3644723 MAANegtheelipapers (AQA) is a company limi

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Е	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC-x	deducted x marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question	Solution	Marks	Total	Comments
and part			marks	
1(a)	Change in momentum is			
	$0.04 \times 12 - 0.04 \times -8$	B1		Conversion to kg
		M1		
		B1		Correct signs
	Impulse is 0.8 Ns	Al	4	– 0.8 B2 M1
(h)	Using Force × time – impulse			
(0)	Force $-\frac{0.8}{0.8}$	M1		
	$10000 = \frac{10000}{0.05}$. 1	2	C.
	= 10 N	Al	2	It
2	$\frac{10ta}{10ta}$	D1	0	
2	Dimension of v is IT^{-1}	BI B1		
		DI		
	$\lambda = \frac{LT^2}{1-2}$	M1		
	$(LT^{-1})^2$			
	$=L^{-1}$	A1	4	
	Total		4	
3(a)	$\mathbf{F} = (7\mathbf{i} + 2\mathbf{j}) + (-3\mathbf{i} + 4\mathbf{j}) + (\mathbf{i} + 6\mathbf{j})$	M1		
	$= 51 + 12 \mathbf{j}$	AI		
	Magnitude of F is $\sqrt{5^2 + 12^2}$	M1		
	= 13	A1	4	
(b)	Moments about <i>O</i> ;			Can take moments about $(x, 0)$ etc
	12 x	M1 A1		
	$= 3 \times 1 + 4 \times 4 + 6 \times 8 - 1 \times 2 + 2 \times 3 + 7 \times 5$	M1 A1		
	12 x = 106		_	
	$x = \frac{100}{12} = \frac{55}{6}$	A1	5	
	Point is $(\frac{53}{6}, 0)$			Can use printed result
	Total		9	

Question	Solution	Marks	Total	Comments
number and part			marks	
4(a)	Using conservation of momentum	M1		
	$3m\binom{7}{-8} + m\binom{2}{5} = m\binom{5}{-4} + 3m\mathbf{v}$	A1		
	$ \begin{pmatrix} 21 \\ -24 \end{pmatrix} + \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \end{pmatrix} + 3 \mathbf{v} $	M1		
	$3 \mathbf{v} = \begin{pmatrix} 18\\-15 \end{pmatrix}$			
	$\mathbf{v} = \begin{pmatrix} 6\\-5 \end{pmatrix}$	A1	4	
(b)	Change in momentum =			
	$m\begin{pmatrix}5\\-4\end{pmatrix}-m\begin{pmatrix}2\\5\end{pmatrix}$	M1		M1 for – 3 <i>m</i> i + 9 <i>m</i> j
	$= 3m\mathbf{i} - 9m\mathbf{j}$	A1	2	sc 1 for 3 i – 9 j
		D1 ^		
(c)	Direction is $1 - 3j$ oe Line of centres is parallel to the change in	BI√		It from (b)
	momentum	B1	2	
	Total		8	
5(a)	T_{2} T_{1} T_{2} T_{1} T_{1} T_{2} T_{1} T_{2} T_{1} T_{2} T_{1} T_{2} T_{1} T_{2} T_{1} T_{2} T_{2} T_{1} T_{2} T_{2	M1 A1 M1 A1 A1		sc 5 if <i>g</i> omitted
(b)	Force in <i>BP</i> is $500g$ N or 4900 N in tension Force in <i>AB</i> is zero since forces at <i>B</i> are in equilibrium and the	A1 B1	6	
	other two forces in <i>BC</i> and <i>BP</i> are parallel.	B1	2	
	Total		8	

Question	Solution	Marks	Total	Comments
number			marks	
and part $6(a)$	Moments about A			
0(a)	$P A l \cos \alpha$	M1 A1		M1 awarded for moments about A even
	$- mq(l\cos\alpha - 2l\sin\alpha)$	A1		when on horizontal floor or if <i>P.4l</i> seen
	$= mg(t\cos\alpha - 2t\sin\alpha)$	A1	4	<i>m</i> instead of <i>mg</i> used penalise one A1 in
	$P = \frac{\cos \alpha - 2\sin \alpha}{4\cos \alpha} mg$			auestion
(b)	Resolve along the plane			1
	$F - P \cos \alpha = mg \sin \alpha$	M1 A1		
	Resolve perpendicular to the plane			
	$P\sin\alpha + R = mg\cos\alpha$	M1 A1		
	Using $F = \mu R$	B1		
	$mg\sin\alpha + P\cos\alpha = \mu (mg\cos\alpha - P\sin\alpha)$			
	$P\cos\alpha + \mu P\sin\alpha = \mu mg\cos\alpha - mg\sin\alpha$	M1		
	$P = \frac{\mu \cos \alpha - \sin \alpha}{mg} mg$	Δ1	7	Accept $P = \frac{\mu - \tan \alpha}{m g}$
	$\cos \alpha + \mu \sin \alpha^{ms}$		7	$1 + \mu \tan \alpha^{ms}$
	Total		11	
7(a)	Speed of Q is 20 km/h	B1		
	$10\sqrt{3}$			
	10			
	$10\sqrt{3}$			
	$\tan\theta = \frac{1}{10}$	M1		
	Bearing is 120°	A1	3	
	2 cm mg 10 1 2 c			
b(i)	Ship <i>P</i> will travel so that v_P is	M1		(If not gained, can gain M1 in (ii) and all
	perpendicular to the relative velocity			marks in (iii))
	Q			
	θ \mathbf{v}_{ϱ} ; 20			
	$\langle \rangle$			
	$\mathbf{v}_{P}; 8$			
	\mathbf{X}			
	$\sin\theta = \frac{8}{2} = 0.4$	m1		Dependent on M1 above
	20			r i i i i i i i i i i i i i i i i i i i
	$\theta = 23.6^{\circ}$	Al		
	Bearing of ship P is 054°	RI	4	Dependent on first MI
(;;)	Velocity of P is $8 \sin 52.61 + 8 \cos 52.61$	B 1		Accept 055.0 ⁻ Dependent on M1 M1 in (i)
(11)	Velocity of P relative to P is $v_0 - v_0$	ום		Dependent on M1, M1 III (I)
	$(10\sqrt{2}; 10;) ((420; 47402))$			
	$= (10\sqrt{3} I - 10J) - (0.439I + 4.7498J)$	M1		
	= 10.881 - 14.70 = 11; 15; [to 2 significant figures]	Δ 1	2	
	-111 - 15j [to 2 significant figures]	AI	3	

Question	Solution	Marks	Total	Comments
number and part			marks	
7(b)(iii)				
	$2 \begin{array}{c} 120^{\circ} \\ \varphi \\ \mathbf{v}_{PrQ} \\ \mathbf{v}_{PrQ} \end{array}$			
	$\varphi = 90 - (30 + \sin^{-1} 0.4)$	M1		
	= 36.42	A1		
	Minimum distance is 2 sin 36.42 $-$ 1.187 km		4	
	OR	AI	4	
(iii)	Position of <i>Q</i> relative to <i>P</i> is			
	$2\mathbf{j} + (10.88\mathbf{i} - 14.75\mathbf{j}) t$			
	Distance apart, D , is			
	$\sqrt{(10.88t)^2 + (2 - 14.75t)^2}$	(M1)		
	$D^2 = 334.486t^2 - 58.8t + 4$	(A1)		
	$\frac{dD^2}{dt} = 668.972t - 58.8$	(M1)		
	= 0 when min distance,			
	when $t = \frac{58.8}{668.972} = 0.0879$			
	Minimum distance is $\sqrt{1.4094}$			
	= 1.187 km	(A1)	(4)	
	OR			
(iii)	Accept from printed result Position of Q relative to P is			
(111)	$2\mathbf{j} + (11\mathbf{i} - 15\mathbf{j}) t$			
	Distance apart, <i>D</i> , is $\sqrt{(11t)^2 + (2-15t)^2}$	(M1)		
	$D^2 = 346t^2 - 60 t + 4$	(A1)		
	$\frac{dD^2}{dt} = 692t - 60$	(M1)		
	= 0 when min distance,			
	when $t = \frac{60}{692} = 0.0867$			
	Minimum distance is $\sqrt{1.442948}$			
	= 1.201 km	(A1)	(4)	
	Total		14	
	TOTAL		60	