

GEE

Mathematics \& Statistics B

Unit MBM4

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]| Question number and part | Solution | Marks | Total marks | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1(a) (b) | Change in momentum is $0.04 \times 12-0.04 \times-8$
 Impulse is 0.8 Ns
 Using Force \times time $=$ impulse
 Force $=\frac{0.8}{0.05}$
 $=16 \mathrm{~N}$ | B1
 M1
 B1
 A1
 M1
 A1 \checkmark | 4 | Conversion to kg
 Correct signs
 - 0.8 B2 M1 |
| | Total | | 6 | |
| 2 | Dimensions of a and g are $L T^{-2}$ Dimension of v is $L T^{-1}$ $\begin{aligned} & \lambda=\frac{L T^{-2}}{\left(L T^{-1}\right)^{2}} \\ & =L^{-1} \end{aligned}$ | B1
 B1
 M1
 A1 | 4 | |
| | Total | | 4 | |
| 3(a) (b) | $\begin{aligned} \mathbf{F} & =(7 \mathbf{i}+2 \mathbf{j})+(-3 \mathbf{i}+4 \mathbf{j})+(\mathbf{i}+6 \mathbf{j}) \\ & =5 \mathbf{i}+12 \mathbf{j} \end{aligned}$
 Magnitude of \mathbf{F} is $\sqrt{5^{2}+12^{2}}$ $=13$
 Moments about O; $12 x$ $\begin{aligned} & =3 \times 1+4 \times 4+6 \times 8-1 \times 2+2 \times 3+7 \times 5 \\ & 12 x=106 \\ & x=\frac{106}{12}=\frac{53}{6} \end{aligned}$
 Point is $\left(\frac{53}{6}, 0\right)$ | M1 A1 M1 A1 M1 A1 M1 A1 A1 | 4 | Can take moments about $(x, 0)$ etc
 Can use printed result |
| | Total | | 9 | |

Question number and part	Solution	Marks	Total marks	Comments
4(a)	Using conservation of momentum	M1		
	$3 m\binom{7}{-8}+m\binom{2}{5}=m\binom{5}{-4}+3 m \mathbf{v}$	A1		
	$\binom{21}{-24}+\binom{2}{5}=\binom{5}{-4}+3 \mathbf{v}$	M1		
	$\begin{aligned} & 3 \mathbf{v}=\binom{18}{-15} \\ & \mathbf{v}=\binom{6}{-5} \end{aligned}$	A1	4	
(b)	Change in momentum $=$ $m\binom{5}{-4}-m\binom{2}{5}$	M1		M1 for $-3 m \mathbf{i}+9 m \mathbf{j}$
	$=3 m \mathbf{i}-9 m \mathbf{j}$	A1	2	sc 1 for $3 \mathbf{i}-9 \mathbf{j}$
(c)	Direction is $\mathbf{i}-3 \mathbf{j}$ oe Line of centres is parallel to the change in momentum	$\begin{gathered} \mathrm{B} 1 \checkmark \\ \mathrm{~B} 1 \end{gathered}$	2	ft from (b)
	Total		8	
5(a)	Resolve horizontally at P $T_{1} \cos 60+T_{2} \cos 30=0$ $T_{1}+\sqrt{3} T_{2}=0$ Resolve vertically at P $T_{1} \sin 60+T_{2} \sin 30=-500 g$ $T_{1} \sqrt{3}+T_{2}=-1000 g$ $T_{1}=-500 \sqrt{3} g ; \quad T_{2}=500 g$ Force in AP is $500 \sqrt{3} g \mathrm{~N}$ or $4900 \sqrt{3} \mathrm{~N}$ or 8490 N in compression Force in $B P$ is $500 g \mathrm{~N}$ or 4900 N in tension Force in $A B$ is zero since forces at B are in equilibrium and the other two forces in $B C$ and $B P$ are parallel.	M1 A1 M1 A1 A1 A1 B1 B1	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	sc 5 if g omitted
	Total		8	

\begin{tabular}{|c|c|c|c|c|}
\hline Question number and part \& Solution \& Marks \& Total marks \& Comments \\
\hline 6(a)
(b) \& \begin{tabular}{l}
Moments about \(A\) \\
P \(4 l \cos \alpha\)
\[
\begin{aligned}
\& \quad=m g(l \cos \alpha-2 l \sin \alpha) \\
\& P=\frac{\cos \alpha-2 \sin \alpha}{4 \cos \alpha} m g
\end{aligned}
\] \\
Resolve along the plane \\
\(F-P \cos \alpha=m g \sin \alpha\) \\
Resolve perpendicular to the plane \\
\(P \sin \alpha+R=m g \cos \alpha\) \\
Using \(F=\mu R\) \\
\(m g \sin \alpha+P \cos \alpha=\mu(m g \cos \alpha-P \sin \alpha)\) \\
\(P \cos \alpha+\mu P \sin \alpha=\mu m g \cos \alpha-m g \sin \alpha\)
\[
P=\frac{\mu \cos \alpha-\sin \alpha}{\cos \alpha+\mu \sin \alpha} m g
\]
\end{tabular} \& \[
\begin{gathered}
\text { M1 A1 } \\
\text { A1 } \\
\text { A1 } \\
\\
\text { M1 A1 } \\
\text { M1 A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& 4

7 \& | M1 awarded for moments about A even when on horizontal floor or if $P .4 l$ seen m instead of $m g$ used penalise one A1 in question |
| :--- |
| Accept $P=\frac{\mu-\tan \alpha}{1+\mu \tan \alpha} m g$ |

\hline \& Total \& \& 11 \&

\hline 7(a) \& | Speed of Q is $20 \mathrm{~km} / \mathrm{h}$ $\tan \theta=\frac{10 \sqrt{3}}{10}$ |
| :--- |
| Bearing is 120° |
| Ship P will travel so that v_{P} is perpendicular to the relative velocity $\begin{aligned} & \sin \theta=\frac{8}{20}=0.4 \\ & \theta=23.6^{\circ} \end{aligned}$ |
| Bearing of ship P is 054° |
| Velocity of P is $8 \sin 53.6 \mathbf{i}+8 \cos 53.6 \mathbf{j}$ Velocity of Q relative to P is $v_{Q}-v_{P}$ $\begin{aligned} & =(10 \sqrt{3} \mathbf{i}-10 \mathbf{j})-(6.439 \mathbf{i}+4.7498 \mathbf{j}) \\ & =10.88 \mathbf{i}-14.75 \mathbf{j} \\ & =11 \mathbf{i}-15 \mathbf{j} \quad[\text { to } 2 \text { significant figures }] \end{aligned}$ | \& | B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| m1 |
| A1 |
| B1 |
| B1 |
| M1 |
| A1 | \& 3 \& | (If not gained, can gain M1 in (ii) and all marks in (iii)) |
| :--- |
| Dependent on M1 above |
| Dependent on first M1 |
| Accept 053.6° |
| Dependent on M1,M1 in (i) |

\hline
\end{tabular}

Question number and part	Solution	Marks	Total marks	Comments
7(b)(iii)				

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

