version: 1.0 9/9/2005

General Certificate of Education

Mathematics and Statistics 6320 Specification B

MBM3 Mechanics 3

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m marks and is for	accuracy
В	mark is independent of M or m marks and is for	accuracy
E	mark is for	explanation
$\sqrt{\text{or ft or F}}$		follow through from previous
		incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
–x ee		deduct x marks for each error
pi		possibly implied
sca		substantially correct approach

Abbreviations used in Marking

MC-x	deducted x marks for mis-copy
MR - x	deducted x marks for mis-read
isw	ignored subsequent working
bod	given benefit of doubt
wr	work replaced by candidate
fb	formulae book

Application of Mark Scheme

No method shown:

mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

Mathematics and Statistics B Mechanics 3 MBM3 June 2005

Q	Solution	Marks	Total	Comments
1(a)(i)	$6^2 = 2^2 + 2 \times a \times 10$	M1		Use of a constant acceleration equation to find <i>a</i>
	$a = \frac{36 - 4}{20} = 1.6 \text{ ms}^{-2}$	A1	2	Correct result from correct working
(ii)	6 = 2 + 1.6t	M1		Use of a constant acceleration equation to
	$t = \frac{4}{1.6} = 2.5 \text{ s}$	A 1	2	find t
		A1	2	Correct t from correct working
(b)	$F - 35 = 65 \times 1.6$	M1 A1		Three term equation of motion Correct equation
	F = 104 + 35 = 139 N	A1	3	Correct force
	Total		7	
2(a)	$v = \int t - \frac{t^2}{5} dt$			
	5	M1		Integrating both terms
	$=\frac{t^2}{2}-\frac{t^3}{15}+c$	A1		Correct integral with or without <i>c</i>
	2 13	A 1	2	Glassina a = 0
	$v = 0, t = 0 \Rightarrow c = 0$	A1	3	Showing $c = 0$
	$v = \frac{t^2}{2} - \frac{t^3}{15}$			
		M1		Substituting $t = 5$
(b)	$v(5) = \frac{5^2}{2} - \frac{5^3}{15} = 4.17 \text{ ms}^{-1}$	A1	2	Correct v
	$\int \int $			
(c)	$s = \int_0^5 \left(\frac{t^2}{2} - \frac{t^3}{15} \right) dt$	M1		Integrating
	$\begin{bmatrix} t^3 & t^4 \end{bmatrix}^5$	A1		Correct expression
	$=\left[\frac{t^3}{6} - \frac{t^4}{60}\right]_0^5$	m1		Substitution of two limits or finding c and
	=10.4 m	A1	4	substituting $t = 5$ Correct distance
	– 10. 4 m	Ai	7	sc for only one limit M1A1A1
	Total		9	de for one one many fraction
3(a)	P			
	$\uparrow \qquad T$			
		B1	1	Correct force diagram
	F ▼ mg			5
(b)	$R + T\sin 40^\circ = 50 \times 9.8$	M1		Three term equation of motion
		A1		Correct equation
	$R = 490 - T\sin 40^{\circ}$	A1	3	Correct expression for R
(c)	$F = 0.6(490 - T\sin 40^\circ)$	M1		Use of $F = \mu R$
	$= 294 - 0.6T \sin 40^{\circ}$	A1	2	ag Correct result from correct working
(d)	$T\cos 40^{\circ} - (294 - 0.6T\sin 40^{\circ}) = 50 \times 0.5$	M1		Four term equation of motion
	$T = \frac{319}{} = 277 \text{ N}$	A1 M1		Correct equation Solving for <i>T</i>
	$I = \frac{1}{\cos 40^{\circ} + 0.6 \sin 40^{\circ}} = 277 \text{ N}$	A1	4	Correct T
	Total	111	10	

MBM3 (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$KE = \frac{1}{2} \times 35 \times 2^2 = 70 \text{ J}$	M1		KE calculation using $v = 2$
	$\frac{RE = -x33x2}{2} = 703$	A 1	2	Correct KE
(ii)	$0 \cdot \cdot = 1$	M1		KE calculation using $v = 6$
	Gain in KE = $\frac{1}{2} \times 35 \times 6^2 - 70$	A1		Correct expression for gain in KE
	= 560 J	A1	3	Correct gain
(b)	PE lost = $35 \times 9.8 \times 10 \sin 40^{\circ}$	M1		PE calculation with attempt to find height
	= 2200 J	A1	2	ag Correct PE; allow 2204
(c)	2204 - 560 = 10F	M1		Energy lost = Fx including 560
(6)	2201 000 101	A1		Correct equation
	F = 164 N	A1	3	Correct F
				Alternative
				M1: Three term equation of motion
				A1:Correct equation
				A1: Correct force
(d)	$\frac{1}{2} \times 35 \times 6^2 = F_S$	3.54		
	2	M1		Use of KE lost = Fx
	$\frac{1}{2} \times 35 \times 6^2 = Fs$ $s = \frac{630}{F} = 3.83 \text{ m}$	A1√	2	Correct equation
	$S = \frac{1}{F} = 3.83 \text{ m}$	A 1√	3	Correct length Follow through <i>F</i>
				Allow 3.84
				Alternative
				M1: Finding acceleration
				A1: Correct use of a constant acceleration
				equation
				A1: Correct length from correct working
	Total		13	
5(a)	$\mathbf{v} = 50\cos(0.1t)\mathbf{i} - 50\sin(0.1t)\mathbf{j}$	M1		Differentiating
		A1		Correct i component
		A1	3	Correct j and k components
(b)	$v = \sqrt{(50\cos(0.1t))^2 + (-50\sin(0.1t))^2}$	M1		Finding magnitude of <i>v</i>
	((cosm(c.m))	A1		Correct expression
	$v = \sqrt{(50\cos(0.1t))^2 + (-50\sin(0.1t))^2}$ $= \sqrt{2500(\cos^2(0.1t) + \sin^2(0.1t))}$	m1		Use of trig identity
	$=\sqrt{2500}=50 \text{ ms}^{-1}$	A1	4	Correct speed
(c)	$\mathbf{a} = -5\sin(0.1t)\mathbf{i} - 5\cos(0.1t)\mathbf{j}$	M1	7	Differentiating
	John (0.11/)1 Jood (0.11/)1	A1	2	Correct acceleration
(d)	$a = \sqrt{(-5\sin(0.1t))^2 + (-5\cos(0.1t))^2} = 5$	M1	_	Finding a
	• 1			
	$F = 8000 \times 5 = 40000 \text{ N}$	M1		Use of $F = ma$ with their acceleration
		A 1	3	Correct force
	Total		12	

MBM3 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$R \longrightarrow mg$	B1	1	Correct diagram (to include arrows and labels)
(b) (c)	$R\cos 60^{\circ} = mg$ $R = 2mg$ $R\cos 30^{\circ} = \frac{mv^{2}}{r}$ $r = \frac{v^{2}}{g\sqrt{3}}$	M1 A1 M1 A1	2	Resolving vertically ag Correct R from correct working Resolving horizontally Correct equation
		m1 A1	4	Solving for <i>r</i> Correct <i>r</i>
(d)	Decrease to ¼ of previous value	B1 B1	2	Decrease 1/4
	Total		9	
7(a) (b)(i)	EPE = $\frac{30 \times 0.8^2}{2 \times 2}$ = 4.8 J 4.8 = 0.15×9.8×2.8 + $\frac{1}{2}$ ×0.15× v^2	M1 A1 M1	2	Use of EPE formula with 0.8 Correct EPE Three term energy equation Accept $0.684 = \frac{1}{2}0.15v^2$
(ii)	$v = \sqrt{\frac{4.8 - 4.116}{0.075}} = 3.02 \text{ ms}^{-1}$ $4.8 = 0.15 \times 9.8 \times 2.8 + 0.15 \times 9.8h$	A1 m1 A1	4	Correct equation Solving for v ag Correct v from correct working Three term energy equation using height above O
	$h = \frac{4.8 - 4.116}{1.47} = 0.465 \text{ m}$ As 0.465 < 2 the string does not become taut.	A1 A1	4	Accept $0.684 = mgh$ Correct equation Correct height above O Accept 0.47 or 0.46 Correct conclusion Alternative
	Total		10	M1: Use of constant acceleration equation A1: Correct equation A1: Correct height A1: Correct conclusion

MBM3 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$60\mathbf{i} + 20\mathbf{j} = 20(2\mathbf{i} - 3\mathbf{j}) + 200\mathbf{a}$	M1		Use of constant acceleration equation in
	$20\mathbf{i} + 80\mathbf{j} = 200\mathbf{a}$			vector form to find a
	$\mathbf{a} = 0.1\mathbf{i} + 0.4\mathbf{j}$	A1 A1	3	Correct equation Correct a
(b)	$\mathbf{v} = (2\mathbf{i} - 3\mathbf{j}) + (0.1\mathbf{i} + 0.4\mathbf{j})t$		3	
		M1 A1	2	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$
(-)	$= (2 + 0.1t)\mathbf{i} + (-3 + 0.4t)\mathbf{j}$		2	Correct expression
(c)	2 + 0.1t = -(-3 + 0.4t)	M1 A1		Equating components with ± Correct equation
	0.5t = 1	AI		Correct equation
	t = 2	A1		Correct t
	v = 2.2i - 2.2j	M1		Finding velocity
	$v = \sqrt{2.2^2 + 2.2^2} = 3.11 \text{ ms}^{-1}$		_	
		A1	5	Correct speed
	Total		10	
	TOTAL		80	