

Mark scheme January 2004

GCE

Mathematics & Statistics B

Unit MBM3

Copyright © 2004 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and Wales 3644723 MAANegtheelipapers (AQA) is a company limited by guarantee registered in England and wales 3644723 MAANegtheelipapers (AQA) is a company limi

Key to mark scheme

Μ	mark is for	method
m	mark is dependent on one or more M marks and is for	method
Α	mark is dependent on M or m mark and is for	accuracy
В	mark is independent of M or m marks and is for	method and accuracy
Ε	mark is for	explanation
or ft or F		follow through from previous
		incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
-x EE		Deduct <i>x</i> marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC - x	deducted <i>x</i> marks for miscopy
MR - x	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified otherwise

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

Question	Solution	Marks	Total	Comments
Number				
	1 2	M1		Constant acceleration equation with $u = 0$
1(a)(i)	$s_1 = \frac{1}{2} \times 0.2 \times 8^2 = 6.4 \mathrm{m}$	A1	2	Correct distance
(ii)	$v = 0.2 \times 8 = 1.6 \text{ ms}^{-1}$	M1		Constant acceleration equation with $u = 0$
		A1	2	Correct velocity
(iii)	$s_2 = 1.6 \times 3 = 4.8 \text{ m}$	M1		Finding stage II distance
(b)	s = 6.4 + 4.8 + 1 = 12.2 m	AI	2	Correct total distance
	$1 = \frac{1}{2}(0+1.6)t_3$	M1		Equation to find stage III time
	$t_3 = 1.25$	A1		Correct time
	t = 8 + 3 + 1.25 = 12.25 s	A1	3	Correct total time
(c)	$T - 600 \times 9.8 = 600 \times 0.2$	M1		Three term equation of motion
	T = 6000 N	A1	2	Correct equation
	Total	AI	3 12	
2(a)	$R + 100\sin 20^\circ + 60\sin 50^\circ = 490$	M1		Resolving vertically
	B = 410	A1		Correct equation
	R = 410	A1	3	Correct R
(b)(i)	$100\cos 20^\circ - 60\cos 50^\circ - F = 25$	M1		Four term equation of motion
	F = 30.4	M1		Solving for F
		A1	4	Correct <i>F</i> from correct working
(ii)	$30.40 = \mu \times 409.8$	M1		Use of $F = \mu R$
	$\mu = 0.0742$	A1	2	Correct μ
	Total		9	
3(a)(i)	Initial KE = $\frac{1}{2} \times 65 \times 2^2$	M1		Use of KE formula
	=130 J	A1	2	Correct energy
(ii)	$65 \times 9.8h = 130$	M1		Using $mgh = 130$
	$h = \frac{130}{637} = 0.204 \mathrm{m} \mathrm{(to}3\mathrm{sf})$	A1	2	Correct h
(b)(i)	$KE = 130 + 65 \times 9.8 \times 6 = 3950 J$ (3 sf)	M1		Sum of KE+PE or PE at $h = 6.204$
		A1	-	Correct equation
	1	A1	3	Correct energy
(11)	$\frac{1}{2} \times 65v^2 = 3952$	M1		Use of KE formula to find v
	$v = \sqrt{121.6} = 11.0 \mathrm{ms}^{-1}$	A1	2	Correct <i>v</i> from their energy in part 3 (b)(ii)
	Total		9	

Question	Solution	Marks	Total	Comments
Number				
$\frac{1}{4(a)}$				
	$v = \int 20 \sin 4t \mathrm{d}t$	M 1		Attempt to integrate a
	$= -5\cos 4t + c$	A1		Correct integral with or without c
	$t = 0, v = 0 \Longrightarrow c = 5$	M1		Finding <i>c</i>
	$v = 5 - 5\cos 4t$	A1	4	Correct <i>c</i>
(b)	$s = \int 5 - 5\cos 4t dt$			
	_ 5	M1		Attempt to integrate v
	$=5t\sin 4t+c$	A1		Correct integral with or without c
	$t = 0, s = 0.8 \Longrightarrow c = 0.8$	M1		Finding <i>c</i>
	$s = 5t - \frac{5}{-1} \sin 4t + 0.8$			
	4	AI	4	Correct <i>c</i>
	Total		8	
5(a)	$40i 15i = \frac{1}{5}(5i 2i + y) \times 10$	M1		Use of constant acceleration equation with
	$40\mathbf{I} - 13\mathbf{J} - \frac{1}{2}(3\mathbf{I} - 2\mathbf{J} + \mathbf{V}) \times 10$. 1		v unknown
	v = 8i - 3i - 5i + 2i = 3i - i	AI M1		Correct equation Solving for y
		Al	4	Correct v
(b)	3i - j = 5i - 2j + 10a	M1		Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$
	- 0.2: + 0.1:	A1		Correct equation
	a = -0.21 + 0.13	A1	3	Correct a
(c)	F = 15(-0.2i + 0.1j)	M1		Use of $\mathbf{F} = m\mathbf{a}$
	= -3i + 1.5j	A1		Correct F
	$F = \sqrt{3^2 + 1.5^2} = 3.35$	M1		Finding magnitude of F
		A1	4	Correct magnitude
	Total	.	11	
6(a)(i)	$R\cos 60^\circ = 3 \times 9.8$	M1		Resolving vertically
	R = 58.8 N	AI A1	3	Correct R
(ii)	v^2	MI		Posolving vorticelly
	$58.8\cos 30^\circ = 3 \times \frac{1}{0.5}$	A1		Correct equation
	$\overline{58.8\cos 30^\circ}$	M1		Solving for v
	$v = \sqrt{\frac{36.800350}{6}} = 2.91 \mathrm{ms}^{-1}$	A1	4	Correct v
(b)(i)	No change	B1	1	No change
(ii)	Increased because v^2 is proportional to the	B1		Increases
	radius	B1	2	Reason
	Total		10	

Question	Solution	Marks	Total	Comments
Number				
7(a)	072	M1		Use of $T = mg$
, (u)	$20 \times 9.8 = \frac{0.000}{2}$	A1		Correct equation
	$2 \times 20 \times 9.8$			
	$\lambda = \frac{1}{0.7} = 560$	A1	3	Correct result from correct working
(b)(i)	$560(L-2)^2$	M1		Two term energy equation
	$20 \times 9.8L = \frac{200(2-2)}{2 \times 2}$	A1		Correct terms
		A1		Correct signs
	$196L = 140L^2 - 560L + 560$	m1		Expanding and simplifying
	$5L^2 - 27L + 20 = 0$	A1	5	Correct result from correct working
(ii)	$27 \pm \sqrt{27^2 - 4 \times 5 \times 20}$			
	$L = \frac{27 \pm \sqrt{27} - 4 \times 5 \times 20}{2 \times 5}$	M1		Solving a quadratic
	= 4.51 or 0.886	Δ 1		Correct solutions
	I - 451	A1 A1	3	Selecting the appropriate solution
	Total		11	Selecting the appropriate solution
8(a)(i)	s(10) = 25 - 100 + 150 = 75	B1	1	Correct distance
(ii)	t^{3} $3t^{2}$	M1		Differentiating s
	$v = \frac{t}{100} - \frac{3t}{10} + 3t$	A1		Correct derivative
	y(10) = 10 - 30 + 30 - 10	A 1	2	Compativ
(;;;)	V(10) = 10 - 30 + 30 = 10	AI	3	
(111)	$a = \frac{3t^2}{3t} - \frac{3t}{3t} + 3$	M1		Differentiating v
	100 5	AI		Correct derivative
	a(10) = 3 - 6 + 3 = 0	A1	3	Correct a
(b)	h = 10	B1		Value of <i>h</i>
	75 = 100 - k	M1		Substituting $s = 75$ and $t = 10$
	<i>k</i> = 25	A1	3	Correct k
	Total		10	
	TOTAL		80	