GCE 2005 January Series

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Mark Scheme

Mathematics and Statistics B

(MBM2)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2005 AQA and its licensors. All rights reserved.

[^0]Key to Mark Scheme

Abbreviations used in Marking

Abstract

MC - x deducted x marks for mis-copy MR - \boldsymbol{x} deducted x marks for mis-read ISW ignored subsequent working BOD .given benefit of doubt WR work replaced by candidate FB .formulae booklet

Application of Mark Scheme

No method shown:

Correct answer without working mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

More than one method/choice of solution:

2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark both/all fully and award the mean mark rounded down award credit for the complete solution only do not mark unless it has not been replaced award method and accuracy marks as appropriate

Mathematics and Statistics B Mechanics 2 MBM2 January 2005

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
1(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \[
\begin{aligned}
\& \mathbf{v}=-4 \mathrm{e}^{-t} \mathbf{i}+\left(6-3 \mathrm{e}^{-t}\right) \mathbf{j} \\
\& t=0 \\
\& \mathbf{v}=-4 \mathbf{i}+3 \mathbf{j} \\
\& \mathbf{a}=4 \mathrm{e}^{-t} \mathbf{i}+3 \mathrm{e}^{-t} \mathbf{j} \\
\& \mathbf{a}=4 \mathbf{i}+3 \mathbf{j} \\
\& a=\sqrt{4^{2}+3^{2}}=5 \\
\& \mathbf{v} \rightarrow 0 \mathbf{i}+6 \mathbf{j}
\end{aligned}
\] \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { B1 } \\
\hline
\end{gathered}
\] \& 2
2
2 \& \begin{tabular}{l}
Differentiating position vector Correct velocity \\
ag Substituting \(t=0\) to obtain initial velocity \\
Differentiating velocity \\
Correct acceleration \\
Finding acceleration when \(t=0\) \\
Correct magnitude \\
For i component \\
For \(\mathbf{j}\) component
\end{tabular} \\
\hline \& Total \& \& 9 \& \\
\hline \begin{tabular}{l}
2(a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& E P E=\frac{1}{2} \times \frac{40}{2} \times 3^{2}=90 \mathrm{~J} \\
\& 90=\frac{1}{2} \times 5 v^{2} \\
\& v^{2}=36 \\
\& v=6 \\
\& E P E=\frac{1}{2} \times \frac{40}{2} \times 1^{2}=10 \mathrm{~J} \\
\& 90-10=\frac{1}{2} \times 5 v^{2} \\
\& v^{2}=32 \\
\& v=5.66 \mathrm{~ms}^{-1} \text { (to } 3 \mathrm{sf} \text {) }
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 2
3

5 \& | Finding EPE |
| :--- |
| ag Correct EPE from correct working |
| Use of $\mathrm{EPE}=\mathrm{KE}$ |
| Correct equation |
| ag Correct speed from correct working |
| Finding EPE 3 metres from O |
| Correct EPE |
| Using EPE lost = KE |
| Correct equation |
| Correct speed |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

MBM2(cont)

MBM2(cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total \& Comments

\hline 4(a)

(b)

(c) \& \begin{tabular}{l}
$$
\begin{aligned}
& F=1500 g \cos 85^{\circ}+300 \\
& \begin{aligned}
P= & \left(1500 g \cos 85^{\circ}+300\right) \times 10 \\
= & 15800 \mathrm{~W} \text { (to } 3 \mathrm{sf}) \\
F & =1500 g \cos 85^{\circ}+30 v \\
35000 & =v\left(1500 g \cos 85^{\circ}+30 v\right) \\
0 & =30 v^{2}+1281 v-35000 \\
v & =\frac{-1281 \pm \sqrt{1281^{2}+4 \times 30 \times 35000}}{2 \times 30} \\
& =18.9 \text { or }-61.6
\end{aligned}
\end{aligned}
$$

Max Speed $=18.9 \mathrm{~ms}^{-1}$

 \&

B1

M1

A1

M1

A1

M1

A1

m1

A1

m1

A1
\end{tabular} \& 4

6 \& | Correct force diagram |
| :--- |
| Finding F |
| Correct F |
| Use of $P=F v$ |
| ag Correct answer from correct working |
| F in terms of v |
| Correct expression for F |
| Using $P=F v$ to obtain a quadratic |
| Correct quadratic |
| Solving quadratic equation |
| Correct speed |

\hline \& Total \& \& 11 \&

\hline 5(a) \& $$
a=0.6 \times 10^{2}=60 \mathrm{~ms}^{-2}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& 2 \& | Use of $a=r \omega^{2}$ |
| :--- |
| Correct acceleration |
| Allow ± 60 |

\hline (b) \& $$
R=0.05 \times 60=3 \mathrm{~N}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \checkmark
\end{gathered}
$$

\] \& 2 \& | Finding product of mass and acceleration Correct R |
| :--- |
| Follow through incorrect a |

\hline (c) \& $$
\begin{aligned}
& R-0.05 \times 9.8=0.05 \times 60 \\
& R=3.49 \mathrm{~N}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \checkmark
\end{gathered}
$$

\] \& 3 \& | Equation of motion at lowest point |
| :--- |
| Correct equation |
| Correct R |
| Follow through incorrect a |

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

MBM2(cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
\[
6(a)
\] \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& 2 \times 9.8=\frac{\lambda}{0.5} \times 0.2 \\
\& \lambda=\frac{9.8}{0.2}=49 \mathrm{~N} \\
\& T=\frac{49 x}{0.5}+2 g \\
\& 2 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=2 g-(98 x+2 g) \\
\& \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\frac{98}{2} x=-49 x \\
\& \text { Period }=\frac{2 \pi}{\sqrt{49}} \\
\& t=\frac{1}{4} \times \frac{2 \pi}{7}=\frac{\pi}{14}=0.224 \text { seconds }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& 3

5

5 \& | Equilibrium considered to form equation in λ |
| :--- |
| Correct equation |
| Correct λ |
| Equation for tension with two terms. |
| Correct equation. |
| Use of $F=m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}$ |
| Correct equation |
| ag Correct result from correct working |
| Finding period |
| Correct period |
| Dividing period by 4 |
| Correct time |

\hline \& Total \& \& 12 \&

\hline | 7(a) |
| :--- |
| (b) |
| (c) | \& \[

$$
\begin{aligned}
& V= \pi \int_{0}^{2} 2-x \mathrm{~d} x \\
&=\pi\left[2 x-\frac{x^{2}}{2}\right] \\
&=\pi(4-2)=2 \pi \\
& 2 \pi \bar{x}=\pi \int_{0}^{2} 2 x-x^{2} \mathrm{~d} x \\
&=\pi\left[x^{2}-\frac{x^{3}}{3}\right]_{0}^{2} \\
&=\pi\left(4-\frac{8}{3}\right) \\
& \quad \begin{aligned}
x & =
\end{aligned} \\
& \frac{2}{3} \\
& \tan \alpha=\frac{\frac{2}{3}}{\sqrt{2}} \\
& \alpha=25.2^{\circ}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\\
\text { A1 } \\
\\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \checkmark
\end{gathered}
$$
\] \& 3

4
4

4 \& | Use of $\int y^{2} \mathrm{~d} x$ |
| :--- |
| Correct expression for the volume |
| ag Correct volume from correct working |
| Use of $\int x y^{2} \mathrm{~d} x$ |
| Correct expression containing \bar{x} |
| Evaluating integral |
| Correct final answer |
| Use of $\sqrt{2}$ |
| Use of tan to find angle |
| Correct expression for tan |
| Correct angle |
| Follow through from part (b) |

\hline \& Total \& \& 11 \&

\hline
\end{tabular}

MBM2(cont)

Question Number and Part	Solution	Marks	Total	Comments
8	$\begin{aligned} & m v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-k v^{2} \\ & \int \frac{1}{v} \mathrm{~d} v=\int-\frac{k}{m} \mathrm{~d} x \\ & \ln v=-\frac{k}{m} x+c \\ & x=0, v=U \Rightarrow c=\ln U \\ & \ln v=-\frac{k}{m} x+\ln U \\ & \ln \left(\frac{v}{U}\right)=-\frac{k}{m} x \\ & \frac{v}{U}=\mathrm{e}^{-\frac{k}{m} x} \\ & v=U \mathrm{e}^{-\frac{k}{m} x} \end{aligned}$	M1 M1 A1 M1 A1 M1 A1	7	Forming a differential equation using $v \frac{\mathrm{~d} v}{\mathrm{~d} x}$ Use of integration to obtain a $\ln v$ term Correct integral with or without c Finding value of c Correct value of c Making v the subject Correct expression for v
	Total		7	
	TOTAL		80	

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Set and published by the Assessment and Qualifications Alliance.

 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

