

GEE

Mathematics \& Statistics B

Unit MBM2

Copyright © 2004 AQA and its licensors. All rights reserved.

Key to mark scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m marks and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft or F		follow through from previous incorrect result
CAO		correct answer only
AWFW		anything which falls within
AWRT		anything which rounds to
AG		answer given
SC		special case
OE		or equivalent
A2,1		2 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE		Deduct x marks for each error
NMS		No method shown
PI		Perhaps implied
c		Candidate

Abbreviations used in marking

MC $-\boldsymbol{x}$	deducted x marks for miscopy
MR $-\boldsymbol{x}$	deducted x marks for misread
ISW	ignored subsequent working
BOD	gave benefit of doubt
WR	work replaced by candidate

Application of mark scheme

mark as in scheme
Incorrect answer without working zero marks unless specified otherwise

[^0]

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number and Part \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
4(a) \\
(b)(i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& 20 \times 9.8=\frac{0.7 \lambda}{2} \\
\& \lambda=\frac{2 \times 20 \times 9.8}{0.7}=560 \\
\& 20 \times 9.8 L=\frac{560(L-2)^{2}}{2 \times 2} \\
\& 196 L=140 L^{2}-560 L+560 \\
\& 5 L^{2}-27 L+20=0 \\
\& L=\frac{27 \pm \sqrt{27^{2}-4 \times 5 \times 20}}{2 \times 5} \\
\& \quad=4.51 \text { or } 0.886 \\
\& L=4.51
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1 \\
m1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& \[
5
\] \& \begin{tabular}{l}
Use of \(T=m g\) \\
Correct equation \\
Correct result from correct working \\
Two term energy equation \\
Correct terms \\
Correct signs \\
Expanding and simplifying \\
Correct result from correct working \\
Solving a quadratic \\
Correct solutions \\
Selecting the appropriate solution
\end{tabular} \\
\hline \& Total \& \& 11 \& \\
\hline \begin{tabular}{l}
5(a)(i) \\
(ii) \\
(iii) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& s(10)=25-100+150=75 \\
\& v=\frac{t^{3}}{100}-\frac{3 t^{2}}{10}+3 t \\
\& v(10)=10-30+30=10 \\
\& a=\frac{3 t^{2}}{100}-\frac{3 t}{5}+3 \\
\& a(10)=3-6+3=0 \\
\& h=10 \\
\& 75=100-k \\
\& k=25
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& 1
3
3
3

3 \& | Correct distance |
| :--- |
| Differentiating s |
| Correct derivative |
| Correct v |
| Differentiating v |
| Correct derivative |
| Correct a |
| Value of h |
| Substituting $s=75$ and $t=10$ |
| Correct k |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

Question Number and Part	Solution	Marks	Total	Comments
6(a) (b) (c)	$\begin{aligned} & \int_{0}^{a} k x \mathrm{~d} x=\left[\frac{k x^{2}}{2}\right]_{0}^{a}=\frac{k a^{2}}{2} \\ & \frac{k a^{2}}{2} \bar{x}=\int_{0}^{a} k x^{2} \mathrm{~d} x \\ & \frac{k a^{2}}{2} \bar{x}=\frac{k a^{3}}{3} \\ & \bar{x}=\frac{2 a}{3} \\ & \frac{k a^{2}}{2} \bar{y}=\int_{0}^{a} \frac{k^{2} x^{2}}{2} \mathrm{~d} x \\ & \frac{k a^{2}}{2} \bar{y}=\frac{k^{2} a^{3}}{6} \\ & \bar{y}=\frac{k a}{3} \end{aligned}$	M1 A1 M1 A1 m1 A1 M1 A1 M1 A1	4 4	Forming integral to find area Correct area Forming integral to find \bar{x} Correct expression Evaluating integral and finding \bar{x} Correct \bar{x} from correct working Forming integral to find \bar{y} Correct expression Evaluating integral and finding \bar{y} Correct \bar{y}
	Total		10	
7(a) (b) (c)(i) (ii)	$\begin{aligned} & a=0.2 \\ & 0.2 \omega=10 \\ & \omega=50 \\ & P=\frac{2 \pi}{50}=\frac{\pi}{25} \\ & v=50 \sqrt{0.2^{2}-0.16^{2}} \\ & =6 \mathrm{~ms}^{-1} \\ & \omega=50, q=0.2 \\ & 0=p-0.2 \cos 0 \\ & p=0.2 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4 3 2	Stating amplitude Using $v=a \omega$ Correct value of ω Correct period from correct working Using $x=0.16$ in SHM formula Correct substitution of all values Correct speed Correct ω Correct q Using $s=0$ Correct p
	Total		11	

Question Number and Part	Solution	Marks	Total	Comments
8(a)	$\begin{aligned} & 0.1 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-0.1 \times 9.8-\frac{v^{2}}{200} \\ & v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\left(9.8+\frac{v^{2}}{20}\right) \\ & \int \frac{v}{9.8+\frac{v^{2}}{20}} \mathrm{~d} v=\int-1 \mathrm{~d} x \\ & 10 \ln \left(9.8+\frac{v^{2}}{20}\right)=-x+c \\ & v=12, x=0 \Rightarrow c=10 \ln 17 \\ & 10 \ln \left(9.8+\frac{v^{2}}{20}\right)+x=10 \ln 17 \\ & 10 \ln 9.8+x=10 \ln 17 \\ & x=10(\ln 17-\ln 9.8)=5.51 \mathrm{~m} \end{aligned}$	M1 A1 M1 M1 A1 M1 A1 A1 M1 A1 A1	6 3	Use of $F=m a$ with the resultant force Correct result from correct working Forming two integrals Integrating Correct integrals Finding c Correct c Correct result from correct working Substituting $v=0$ Correct equation Correct x
	Total		11	
	TOTAL		80	

[^0]: Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

